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PREFACE

The subject matte, of these lectures represent a selection of topics from
recent advances in the estimation of animal abundance. These topics are somewhat
unrelated and have been chosen to encompass as wide an audience as possible.
Judging by the many discussions I have had with faculty and senior students, there
is a great deal of interest in abundance problems at the University of Washington,
and I have enjoyed this stimulating contact.

Parts of lectures I, 2, 4 and 6 and almost all of lecture 5 are based on
material submitted to the publishers, Charles Griffin and Co., for the second ed-
ition of my book The Estimation of Animal Abundance and Related Parameters. Also
part of lecture 4 is based on an article submitted to Wiley, New York, for publi-
cation in one of their Statistical Sciences encyclopedias. Lecture 3 is based
on some of my current research.

wish to thank Professor Douglas Chapman, Dean of the College of Fisher-
ies, and Professor Ole Mathisen of the Fisheries Research Institute for their
invitation to come to Seattle and for their kind hospitality extended to me and
my family while we have been here. Thanks must also go to the Sea Grant organi-
zation for financially supporting my visit, and to Mr. Steve Syrjala for proofing
the final text.

June 1979 G. A. F. Seber





justification, the coefficient of variation of many kinds of index data seems

sufficiently constant in practice to supply an approximate guide for planning

purposes." He gives a useful table of population coefficients of variation that

might be expected from various species. This table can be used for determining

sample sizes to achieve a desired level of precision ln the estimation.

Regression techniques can be useful for converting a relative index io an

absolute density, or for making comparisons between indices  Bergerud, l972,

ptarmigan; Wagner and Stoddart, 1972, jack-rabbits; Calef, 1973, tadpoles;

McCaffery, I973, road kills of deer; Fischer and Keith, l974, 596, ruffed grouse;

Gross et al., 1974, jack-rabbits; Schwartz, 1974, quail; Brown and Smith, l976,

doves; Dzieciolowski, 1976a, ungulate track counts; and McCaffery, l976, deer

trails!. A possible model, for example, is E[Y,] = B E[X.], where X. and Y. are
I I

approximately unbiased estimates of the relative and absolute population density

in the ith sampling area, and 8 is the correction factor. This equation is com-

monly referred to as a "functional relationship" and methods are available for

estimating 5  cf., Moran, l97I and Seber, l977:2IO!. However, it is not always

easy to obtain a reliable correction factor--for example, to obtain a correction

factor to convert counts on haul-out areas and in breeding colonies of marine

mammals  Eberhardt et al., l979!. For this reason, pellet groups do not seem to

have been very successful as an index method, though they can be useful in com-

paring habitat usage  Dzieciolowski, l976b!.

Importance of Random Sampling
Provided sampling is random, the population does not need to be randomly

distributed--a principle that is not always appreciated. For example, suppose

that there are N objects in an area A and we select a sample region of area pA

at random. Then, since the region is randomly selected, the probability that it

contains any given animal is p. Let y. = I if object number j j = I,2,...,N! is
J

selected and y . = 0 otherwise. Then Pr[y .= I] = p = I -q!,
J J

E[y.] = I.p + O.q = p,
J

and, using a similar argument, var[y.] = pq. If n animals are counted in the
J

sample region, then



E[n] = ! E[y,] = Np,
J

and

var[n] = ! ! cov[y,,y ]

! var[y.] 4 2 !   cov[y,,y ]
j j<k

where

l»r[y.] = Npq.
J

Thus an unbiased estimate of N is N = n/p. If the objects tend to be clustered

then cov[y.,y ] > 0 and var[n] > Npq. On the other hand, if the objects are
k

randomly distributed, then the y. are mutually independent, cov[y.,y ] =  ! and
J j' k

var[n] = Npq. In this case n has a binomial distribution with parameters N and

p, and is approximately Poisson with mean 8 = Np. However, provided the sampl-

ing is random, N is unbiased irrespective of the distribution of the objects.

It Is only when theoretical varlances are required that we need to know something

about the distribution of the population. Thus, In the random case, var[N]
2

var[n]/p = Nq/p, while for the clustered population var[N] > Nq/p. Variance

estimates are best' obtained by repl ication as fol lows.

Suppose we select at random, without replacement, s plots each of area a
* s

from S =A/a! possible plots. Then sa = pA and N = n/p = Z x./ sa/A! = x A/a,
i=l i

where x, is the count on the ith sample plot. Thus the estimate of population
I

density D =N/A! is D = N/A = x/a, the mean sample density. From sample survey
A

theory an unbiased estimate of the variance of [! is



I
v[0] = � I � � . 2

v 5

s S

2where v =  .  x.-x! / s-I!. This theory can also be appl ied to stratified random
I I

sampling and further details are given in Seber �973: Chapter 2!.

Experimental Design
A major consideration in designing a sampling experiment is the determin-

ation of p  the proportion of the population area sampied! and s  the number of

plots!. Apart from field considerations and the cost of laying out a sample plot,

the overriding constraint will be the required accuracy of estimation, as meas-

ured for example by the coefficient of variation C  = standard deviation/mean!.

The safest approach might be to use a small pilot survey; otherwise we need to

make some assumption about the distribution of each xl or n  = Zx,!. If the pop-
ulation is randomly distributed, then n is binomial and p = I/ I + NC ! = I/ NC !,2

which can be determined for a prescribed C if a rough estimate of N is avai lable.

A rough working rule when p < 0.2 is that C = I/Pn so that 100 animals must be
counted for a coefficient of variation of about IO percent. Once p is determined,

s should be reasonably iarge, say s > 30.

If the population is not randomly distributed, which is usually the case,

then it may be more appropriate to assume a negative binomial distribution for

each x.. In this case
I

p = +
I I

NC SkC

which can be calculated, for a given C, if rough estimates of N and k  the usual

"aggregation" parameter of the negative binomial! are availab!e.

Aerial Survey
Aerial survey is the only practicable means of estimating the number of

large animals inhabiting an extensive area on land or in the sea. Although The

estimate is usually inaccurate  biased! and often imprecise  i.e., has large vari-

ance!, it can be used to answer a broad range of ecological and management ques-

tions to an acceptable level of approximation. The precision of an estimate can

be controlled by careful experimental design and one of the first papers to give



adequate attention to the design aspect is that by Siniff and Skoog �964!. Sub-

sequently, the important papers by Jolty �969a,b!, which apply the sample theory

of Cochran �963! to aerial censusing, have encouraged a rigorous application of

sound sample survey principles. Jolly �969a! selected three designs as being

particularly suited to aerial survey:  i! simple random sampling with equal�

sized units,  ii! simple random sampling with unequal-sized units using the ratio

method, and  iii! equal- or unequal-sized units selected with probability pro-

portional to size. Formulae for sampling with or without replacement are also

given by Jolly. A helpful, more accessible, discussion of these methods is given

by Caughlev �977a!, who also considers such questions as systematic versus ran-

dom sampling, and quadrat versus transect sampling units.

It appears that apart from Siniff and Skoog �964!, the use of sampling

methods in aerial censusing began in the mid-1960s in East Africa in the Seren-

geti National Park, Tanzania  Jolly and Watson, 1979!. Previously in East Africa

several attempts were made at total counts from the air of certain species, and

photography was sometimes used instead of visual counts. Watson evidently first

used sample survey techniques in the Serengeti to estimate the zebra population

in 1966. He used st'ratified random sampling with five ecologically defined strata,

and within each stratum parallel strips extending the full width of the stratum

were chosen at random. Since then, various workers in East Africa have adopted

stratified strip  transect! sampling as a standard procedure for monitoring wild-

life populations  cf., East African Wildlife Journal from about 1969 and the

special 1969 issue of the East African Agricultura! and Forest ry Journal: some

references are Watson et al., 1969a,b; Sinclair, 1972; Bell et al., 1973; Norton-

Griff iths, 1973, 1975b; Caughley and Goddard, 1975; and Eberhardt e, al., 1979,

table I, marine censuses!. Random strip sampling is also being used in Australia

 cf., CSIRO publications, for example Frith, 1964, and Bailey, 1971!.

The theory of stratified random strip sampling is given by Jolly �969a!

for the two cases,  i! equal probability of selection within a stratum which

leads to a ratio-type estimat'or, and  ii! pps sampling or probability of selection

proportional to size, that Is proportional to the length of t' he sample strip. In

comparing these two methods, Jolly and Watson  l979! point out that there is

little difference in the precision of the two methods when the sampling fractions

are smail' However, case  ii! leads to an unbiased estimate while the ratio es-



-Itimate of  i! leads to an estimate with a bias of order s , where s Is the total
number of strips sampled. For this and other reasons, the proportional-to-size
method is the one recomrnendeC by Jolly and Watson <1979b!. Thus if N. and A. are

J J
x.. is the count

I J
and d.. = x,/a

ij ij ij'
is given by

the population size and area of the jth stratum  j = 1,2,...,J!,
on the ith strip of area a.. i = 1,2,...,s.! in the jth stratum,

ij J
then an unbiased estimate of the total population size, N = Z N.

J

N = Z N. = Z A d,
J J J J

where d . = Z d..ls.. An unbiased estimate of the variance of N is then given by
J ~J j

s.
J

 d.. � d.!
IJ J

Zv = Z
2 = -2

J J

To determine the population of strips In a stratum, the simplest method
is to draw a baseline, usually along the "ecological axis" or direction of least
ecological change in the stratum, and then draw parallel lines one strip width
apart at right angles to this baseline. Selection with probability proportional
to the length of the strip can be accomplished by choosing a point at random in
a rectangle on the map enclosing the stratum. Those strips in which the sample
points fall then constitute the sample from that stratum. In order to achieve

pps sampling, the sampling must be with replacement. If the same strip is chosen
say k times then the strip is flown just the once but the count is included k

times in the above formula for N.. In practice the strip is identified from the
J

plane by flying the plane at a given altitude and direction, and counting all
animals seen between two markers on a wing strut. This raises the question of
calibration and the problem of variations in flight path: the reader is referred
to Joliy and Watson �979b! for a useful discussion of these points. Further
practical comments on some of the field problems associated with aerial censusing
are given by Larsen, 1972, polar bears; Norton-Griffiths, 1975a; Caughley, 1977a,
b; and Eberhardt et ai., 1979, marine mammals!.

In practice, transects seem to have a clear advantage over quadrats  or
irregular shaped blocks determined by natural boundaries! in terms of flying costs,



ease of navigation, boundary effects, observer fatigue, and sample error  Norton-

Griff iths, 1975a, 26-28; Caughley, 1977a !. Quadrat or block counts are more ap-

propriate in rough country, where transect flying is difficult, or where vegeta-

tion is very thick and/or patchy, or where animals occur in very large and con-

spicuous herds. Some examples of quadrat counts are moose  Le Resche and Rausch,

1974; Evans et al., 1966; Peek et al., 1976!, coyotes  Nellis and Keith, 1976!,

caribou  Parker, 1972!, and a nesting population of eagles  Grler, 1977!. Admit-

tedly, animals are more readily seen using quadrat counts  Laws et al., 1975:

340!, but it is of little advantage since a significant proportion of animals

still tend to be missed no matter what sampling unit is used. Although there

seems to be some reluctance on the pari of investigators to admit the fact, there

is ample evidence  e.g., Graham and Bell, 1969; Hornocker, 1970, 20-21; Bergerud,

1971, 10; Stott and Olson, i972; Le Resche and Rausch, 1974; and in particular,

Caughley, 1974, 922, and 1977b, 35! that even experienced observers can overlook

as much as 20 per cent or more of the animals so that all estimates, whether

based on quadrats or transects are underestimates. A number of methods for cor-

recting these underestimates have been proposed. These are described below.

I. Method of correction factors

If accurate ground counts can be made over some of the sample strips,

then a correction factor can be calculated  Le Resche and Rausch, 1974; Stott

and Olson, 1972; Hopper et al,, 1975, 15; Caughley et al., 1976; Eberhardt et al.,

1979!. For example, if x. is an accurate count on sample strip i, y. is the
I I

aerial count on the same ."trip, and P, the probability of an animal being seen

from the plane, is constant, then we have the linear regression model E[y.~x.l
Px. and P can be estimated by least squares or by the ratio estimate y/x  Jolly,

I

1969b; Jolly and Watson, 1979!. This estimate can then be used to correct ihe

total aerial count. Unfortunately, ground counts usually suffer from The same

visibility bias, though to a lesser extent  Henny et al., !972, 4-5!.

Correction factors can also be provided by  i! photography  Watson, 1969;

Sinclair, 1969, 1972, 1973; Norton-Griffiths, 1973, and Kerbes, 1975!;  ii! in-

frared scanning  Graves et al., 1972, but see Caughley, 1974, 930!,  iii! ultra-

violet photography  white coats appear black, e.g., Lavigne and Oritsland, 1974a,

b, polar bears; Lavigne et al., i975, harp seals! ~  iv! simulation experiments

 Watson et al., 1969c ; Caughley et al., 1976!;  v> conspicuous tags, where P is



estimated from the proportion of tagged animals seen from the air  Nellis and

Keith, l976; Rice and Harder, l977!. Further examples of the use of correction

factors are given by Goddard  l967, 1969!, Watson et al.  I969a,b!, and Penn-

cuick and Western <1972!. If counts are obtained solely by studying photographs
under a low-powered microscope, a correction factor can be obtained by observing

some of the photographs under a higher magnificatlon.

Caughley �977a, 6I2! states, from personal experience, that "quadrats

are a nightmare when it comes to estimating correction factors. The counts are

sensitive to variations in piloting skill, the time spent over the quadrat, the

state of the observer's stomach, and the rapport between pilot and observer.

The counts from transects are more robust to these influences."

The true count, n say, and the probability P of sighting an animal in a

given transect can be estimated by flying over the transect several  = k! times.

Several methods of estimation are possible. For example, if y and v are the

sample mean and variance of the repeated counts, then assuming a binomial dis-

tribution,  i.e., random distribution of animals> we have E[y] = nP and

E[v] = nP l-P!. Thus moment estimates of n and P are  Caughley and   oddard,

[972! A
n = y / y � v!

and A
P = I �  v/y!

Estimates of P can then be averaged over several such transects to obtain an

overall correction factor for the total count. Since

nk k - -2E[v] = k I E[y] � k I E[y ]

-2
v = ay + by + e ,



where E[e! = 0 : Caughley and Goddard �972! propose a similar quadratic model

for handling non-randomly distributed populations. Another method of estimating

n is by the bounded counts method <Seber, l973, 58!: y/n will then give an esti-

mate of P.

Multi le re ression method

An interesting regression method for estimating the true density from

the "apparent" or observed density is given by Caughley  cf., Caughfey et al.,

1976!. There is clear evidence that sightability goes down as the speed, alti-

tude, and strip width are increased <Pennyculck and Western, 1972!. Therefore

Caughley suggests regressing apparent density D on these factors and then extra-

polating to zero. Thus if the model is of the form E[[!] = g> + II x + ... + g x ,
k k'

then 50 represents the true density. This method shows some promise though the
validity of the extrapolation needs further investigation. There are also other

factors that need to be considered as, for example, fatigue and time of day can

affect counts by observers <Larsen, 1972; Norton-Griffiths, 1976!: clearly ob-

servers need to be properly trained  Sinclair, l973!.

4. Combinin data from inde endent observers

Suppose there are two independent observers and it is possible to map the

locations of the animals or their signs so that the numbers seen by observer

and not by observer 2, seen by observer 2 and not by observer I, and seen by both

observers are available. Then, by regarding the animals seen by observer i as

being "caught" in sample i, a Petersen estimate of the true count can then be

made, provided observers are independent. This technique of using several in-

complete lists to effectively estimate the number missing from all the lists has

a long history and the literature is surveyed by El-Khorazaty et al., 1977. The

first application of this method to ecology seems to be that of Magnusson et al.

�978; crocodile nests!. If there are several observers then the bounded counts

method  Seber, 1973:53! can be used: 8ergerud �911!, for example, uses the

maximum count of three observers.

5. Use of rou sizes

Several models have been proposed by Cook and Martin �974! and Jolly and

Watson �979! for calculating correction factors and density estimates for pop-



ulations which tend to cluster in large groups. The main assumption underlying

these models is that, conditional on observing at least one member of a group of

animals, the entire group is observed with certainty. This assumption could be

achieved using a "two level" sampling procedure: on encountering a group of one

or more animals the observer counts or photographs in the usual way and then the

pilot descends to a very low level so that the observer can re-count or re-photo-

graph until he Is satisfied that ail the animals in the group have been accounted

for. A problem with group of animals is that a group may overlap more than one

strip transect. In this case the group count ls divided by The number of popula-

tion strips that contain part of the group  cf., Jolly, l979, for details!.

6. Eberhardt's method

Eberhardt  I978a! introduced a very promising method for estimating P

from counts ni and n on substrips  O,h! and �,25! respectively. The corrected
population estimate is

N = n/P

A�nl n2!
4'

where L is the length of the strip. For a random population the coefficient of

variatlon has a rough upperbound of 2/Wn , which ls double that for quadrat sam-
pling. The choice of h is discussed by Eberhardt. A variance estimate is best

obtained by replication and not from a theoretical expression for the variance

 cf., Seber, l973, 6!.

Aerial survey methods have also been used for counting marine animals

such as sirenians, otters, polar bears, seals, dolphins, porpoises, walruses,

and whales  cf., Holdgate, 1970; Schevill, l974; Gilbert et al., l976; and Eber-

hardt et al., 1979!. However, with both shipboard and aerial counts of marine

animals there ls an added complication: some of the individuals may be submerged

at the time of the count and a correction factor ls required for this in addi-

tion to the correction for animals which are on the surface but are not seen.

Several models have been developed to handle this problem  cf., Eberhardt, 1978a!,

but further research is needed.



7. Po ulation indices

Another approach to ihe probiem of estimation is to simply recognize that

the estimates are biased and treat them as relative, rather than absolute, mea-

sures of abundance. If the bias can be held constant by rigorously standardizing

the methods  e.g., fixed speed, altitude, and stripwidth!, then the indices ob-

tained can be used for monitoring changes in the population size and distribution,

and determining preferences for different habitats. If an index is all that is

required, then clearly transects are superior to quadrats or blocks. However,

the wildlife manager frequently has to know absolute densities so that he can

translate a permissible harvest into hunting quotas.
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LINE AND STRIP TRANSECTS
I7

Introduction
The strip transect method, which simply amounts to counting animals or

their signs on a strip of prescribed width 2W, is appropriate when the population

is fairly numerous and readily visible. The sample survey theory is, of course,

the same as for quadrats and this was described briefly in lecture I. When the

strips are of different length we saw that more efficient methods than simple

random sampling are available.

If measurements such as the right angle distance  y!, the radial distance

 r!, and the angle of sighting  8! with respect to the center line of the strip,

are recorded for each animal, then the counts can be corrected for visibility if

not all the animals in The strip are sighted. We mentioned in lecture I that the

main requirement for unbiased estimation is that the strip be randomly placed.

In this case, if an animal is in the strip then y has a uniform distribution on

[O,W]. If the population ih randomly distributed, then the y's will be stat Is-

tically independent. However, if the population is not random then the y's may

be correlated even though they all have the same marginal distribution. This can

be seen by considering the extreme case in which all the animals lie on a line

parallel to the transect: y is now the same for all the animals.

In practice the experimenter may choose W after The experiment as W may

have been fixed at too large a value, or there may be a few very large values of

y which might best be regarded as outliers and ignored.

In contrast to the strip transect, the line transect, which can be r e-

garded conceptually as a strip of infinite width, is perhaps more appropriate

when fhe counts are likely to be low. The observer would then wish to record all

the animals seen and not just those out to a distance W.

General Theory
We shall as ume to begin with that y < W. Let N be the total number of

animals in the population region of area A. If P is the probability that an ani-

mal is seen on the strip and n is the number of animals seen on the strip, then,

for a random transect, Eln] = NP <lecture I!. Let PW be the conditional probab-
ility of seeing an animal given that it is on the strip, and let PL be the pro-
bability that an animal is on the strip. Then



P = Pr [animal seen]

Pr [animal seenjanimal on strip] Pr [animal on strip]

= 'W'L

Now for a random transect P = 2LW/A, and using the fact  from above! that the

random transect implies that y has a uniform distribution, It can be shown that

PW = E [g y! ]
y

g y!dy
I

W

uW/W, say,

where g y! is the probability that an animal is seen, given that it is a right

angle distance y from the observer. Thus

W 2LW
E[n] = NP P = N ~ � ~ = 2DLu

W L W A W

and D =N/A! can be estimated by

D = n/�Ly !,

where uW is an estimate of uW. It is readily shown that the line transect theory
readily follows from the above by letting W ~ ~ in  I!. Thus D is estimated by

n/�L> ! where

g y!dy .



It can be shown that the density function of z, the right angle distance

of the aniaai in the strip given that it is seen, is

0 < z < W �!

We use z to distinguish it from the unconditional uniform random variable y  y

may not be observed!. Thus

f z! f�!

g z! g�!

Ihlow if we redefine the funCtiOn g aS kg � < k < I!, then f z! is still giVen by

�! as k cancels out of the ratio. This means that there is an indeterminancy in

models which are developed solely in terms of f. This Indeter minancy is usually

removed by postulating g�! = I, that ls all animals directly in front of the ob-

server are seen. In this case f�! = I/uW and

D = nf/�L!

where f is an estimate of f�!.

Parametric models

amounts to assuming a random distribution of animals. From the data the para-

meters determining the shape of f z!, and hence f�!, can be estimated using max-

Imum likelihood estimation.

Various models have been postulated for f: for example, the exponential

distribution  Gates et al., 1968!; the power law distribution <Eberhardt, 1968!;

the truncated linear model  J5rvinen and VBislnen, 1975!; the incomplete gamma

distribution  Sen et al., 1974, 1978a,b!; the logistic model  Eberhardt, 1978,

Appendix D!; the halt-normal distribution  Hemingway, 1971, and J5rvinen and V51-

The parametric approach described in Seber �973:29-35! is to postulate a

model for g, and hence for f. However, it requires that the animals behave in-

dependently of one another so that the z.  i = 1,2,...,n!  the observed y's! are

a random sample with distribution given by f z!. This requirement of independence

combined with the fact that f does not depend on the position of the transect
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s5nen, 1975!; and the fami ly of exponential power series distributions  Pol lock,

1978!. A number of other estimation procedures are compared experimentally by

Robinette et al. �914!. Of particular note is Pollock's model  W = !:

A [' I+I/p!

This flexible family of distributions contains several of the above distributions

as special cases: for example, the exponential  p = I! and half-normal  p = 2!.

Pollock gives an iterative procedure for finding the maximum likelihood estimate

of

f�! = I/XI' I+I/p!

and its asymptotic variance. In addition, Pollock gives a useful regression

method for handling grouped data which also applies to the strip transect  W < !.

Assuming that for large n, E[f n] = f�! and var[f~n] = a /n for some
constant a , Burnham and Anderson �976, 329! show that

2

E[D! = D

and

2
var[D] = D2 var[n] + a

 E[n! ! E[n]f �!

Since the population is assumed to be random n is approximately Poisson with mean

NP  = 2DL/f�!! when P is small--the usual case. Then

Df �! a
2

var[D! = I +
f �!
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and var[D] is inversely proportional to L. Thus if we have r sample transects

each of length L.  i = 1,2,...,r!, then the appropriate weighted mean is  cf.,
I

Seber, 1973, 6, w i th w. = L. !

I D = ! LD/! L.
i

with approximately unbiased variance estimate

 r-I ! $ L.
I

Non � arametric models

In addition to the parametric models I isted above, a number of non-para-

metric methods have been developed, recently  Anderson and Pospahaia, 1970; Emlen,

1971; Burnham and Anderson, 1976; Anderson et al., 1978; Eberhardt, 1978; Grain

et al., 1978; and G. Patil et at., 1979; and S. Patil et al., 1979!.

Eberhardt'e Method. This method was described in lecture I and consistsof estimating f�! by f
2A n

and D by

D =  >ni-n2!/�Lb,!
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where nl and n2 are the numbers of animals on either side of the line transect at
distances which fall within the intervals  O,A} and  A,2A] respectively.

Loq-Linear Modeb. Anderson and Pospahala �970! presented data on water-

fowl nests which is well described by taking

g x! = exp  0 Ix b2 !, 0 x W2

g u.!
g u,!

g u !

E[n.]

E[nl]

so that

E[Iog n,/ni!! = blu. + b2u.2

j I I j2j

We can now carry out a weighted least-squares fit, weighted as the n. are corre-
J

lated. Finally, using the normal distribution function, we can calculate

W W

g y!dy = exp b y + b y !dy

0 0

and D = n/�LpW!. Full details are given by Anderson et al., l978.

with b = 0 as we assume g�! = I. Suppose that the interval [O,W] is partitioned

into k subintervals I I ,...Ik, each of width W/k. Let u, = midpoint of the jth
J

interva I and n, = number of animals seen on the strip with perpendicular distances
J

lying in I.. Then
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Ranked Data. Another method of estimating f�!, for the case W = ~, is

provided by the theory of S. Patil et al.  I979!. If z < z ... « z
 n!

are the ranked right angle distances then f�! can be estimated by

where k is the integral part of k n!, an appropriate sequence of real numbers

satisfying k n! ~ ~ and k n!/n ~ 0 as n ~ . The best choice for k n! is pre-

sently being investigated  Burnham: personal communication!. The above method

Founder Sexes Method. Another very promising method for a f ixed width

transect  finite W! has been proposed by Grain et al.  l978! who assume a Fourier

cosine series for f z!, namely

f z! = � � + $ ak cos � , 0 < z < W ,I kmz

k=l

where

Then

where the truncation point m is to be selected  usually m < 6 is satisfactory!.

is readily modified to handle the finite W case.

W

2 k~z 2
a = � f  z!cos dz = � E

k W W W

m

f O! = � +   a
W k

Ik j



Unbiased estimates of the ak are ak = 2uk/W, where

n
I k~z .u =   cos

k n

and an approximately unbiased estimate of f�! is given by

m P
+ ! a

m W

This method ls also considered by G. P. Patil et al.  I979!.

Choice of Netted. Whether one should use a parametric or nonparametric

method Is still an open question, and the answer will depend to a large extent

on the nature of the population. As a general principle, the nonparametric meth-

ods are much more robust with regard to the underlying assumptions but are less

efficient, that is they give a higher coefficient of variation. For example,
A 2

C is an estimate of the coefficient of variation of D, 0 = 2/n for Gates' ex-
A 2

ponential model, while C = 4/n for Eberhardt's nonparametric method.   believe
A 2

that these values of C reflect the general range for randomly distributed pop-

ulations. Clearly if The exponential model is valid then it should be used In

preference to a non-parametric approach. However, Anderson et al. �976! point

out that evidence is gradually collecting that the negative exponential models of

Gates are not generally applicable.

Radial distances from a line transect

Ciz'cuZar FZuehing Region. Methods of estimation have also been developed

which use radial rather than right-angle distances. One such model, which we might

call Hayne's circular flushing-region model, is considered by Eberhardt  I978!.

lt is assumed that, for a given survey, an animal is flushed out Into the open as

soon as the observer crosses the boundary of a circle of radius r centered on the

animal. From the line intercept theory  cf. Lucas and Seber, l977, with w. = 2r.!,
I I



it fol lows that Hayne's  l949! estimator

n I I
n

0
2 2L n -Il=l I

�!

2L
i=i

is unbiased; that is, E[D2~ r.!] = 0. [
 Is also unconditionally unbiased, so
I

that it is unbiased irrespective of whether we regard the r. as fixed or random,

provided the transect is randomly placed. For this reason I prefer not to use

Eberhardt's dichotomy of fixed- and variable-distance models.

Since the transect Is randomly placed, the conditional density function
of z given r for the above model is

f z!r! = � , 0 < z < r, �!

so that, given r, sin 6 = z/r has a uniform distribution on [O,l]. Thus 6 has

density function  cf., Seber, l973, equation 2.20!

f  8! = cos 8, 0 < 8 < m/2 �!

and, for the above circular model, �! is true in general, and not just for the

exponential model. However, the flushing region need not be circular, and de-

tection may depend on the observer so that other models" have been suggested for

the distribution of 6, For example, Robson has suggested that 6 is perhaps uni-

form on [O,m/2] when the searching is for inanimate objects. In the case of �!,
E[8] = 32.7 , whiie for Robson's model E[8] = 45 . Clearly, 8, the average

flushing angle, will shed ;ome light on the appropriateness of a given model.

For example, Robinette et al.  I974! carried out a number of simulated experiments

to compare ten methods of estimation and found that for Il studies the Hayne esti-

"See Burnham and Anderson  I976! and Burnham  l979! for an elliptical model.
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mator had an average bias of about 41 percent. Burnham and Anderson <l976! point
out that this is not surprising as  ! ranged from 36.0 to 52.4o with an overal I

average of 43.6 . 'this is wel I removed from 32.7 . Gross et al.  I974! also

tested out �! by comparing their data on jackrabbits with the cosine curve given

by �!. The data from one observer seemed to follow the curve fairly well but

the data from the second observer was a poor fit. In addition to an observer

difference, they found seasonal and yearly differences, and demonstrated a posi-

P = � rf  r!dr
2L

A

0

�!

2Ld

A
�!

f2<r! .= rf <r!/d  8!

Thus, conditional on n, the observed r. are independently distributed with den-

sity function f2 r! and

tive relationship between flushing distance and population density.

The validity of equation <4! is best examined by comparing the sin 8.

with the uniform distribution. For example, a goodness of fit test for lizard

data is given by Eberhardt  l978, table 3!. However, a word of caution: al-

though the 0. will each have the same marginal density function they may not be
I

independent if the population is not randomly distributed.

Up till now we have made no assumptions about the ri l = I,2,...,N! other
than that they are constants. Suppose, however, that the r. are regarded as ran-

I
dom sample from a distribution with density function f  r!. Then, arguing as

above, it is readily shown that for the line transect <W = ~!, the probability

of an animal being seen is
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-I -I -IE[r ~animal seen] = r rf  r!dr/d = d f  r!dr = 'I/d
I 1

0 0

Hence, from �! and �!,

= E[n/�Ld!I
n

= NP/�Ld!

so that Hayne's estimator is unbiased; a fact already noted. Also from the argu-

ment leading to �! we see that the conditional distribution of 8 given r does

not depend on r; that Is, r and 8 are independently distributed.

Finally we note that there is an "edge effect" to be considered. As the

observer approaches the beginning of the transect a number of animals will be

flushed whose flushing regions overlap the beginning of the transect, but these

will not be counted. However, these will be compensated for at the other end of

the transect as animals will be counted there which are not in the region per-

pendicular to the transect, that is which do not lie on some perpendicular from

the transect and therefore do not, strictly, have an observed y. This situation

is identical to the problem of partial chords at the ends of the transect in line

intersect sampling: chords are completed at one end and ignored at the other.

StooLzstic Flus&ng Node7. Up tl I I now we have not needed any assumptions

about the ri� = I,2,...,N! other than that they are constants. An alternative
approach, which we shall call the stochastic flushing model, is to assume that

the probability of an animal being flushed, given that its distance from the ob-

server Iles in the interval [r,r + dr], is hl r!dr. The density function hl is
conceptually different from f of �! as we have made no reference to the notion

of a flushing region. Following  8!, Burnham and Anderson  l976! develop a joint

distribution for z and r, and show that if f z!r! is the conditional density

function of z given r, then
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n

� ! f o~r !
r n i=1 i

 9!

for this case.

Following  8! we can define h2 r! = rhi r!/d, the density function for
an observed r. Gates' models then lead to the gamma distribution

2
h

which provides the  modif led! maximum l ikel ihood estimate

i 2n-1 !/Z r �0!

Since f�! = A, X is an unbiased estimate of f�!, Using Gates' model Kovner

and Patii  l974! compared �0! the minimum variance unbiased estimate of X, with

several other well-known estimators.

Eberhardt  l978, Appendix C! also considers the stochastic flushing model

and points out the following relationships <see also Burnham and Anderson, l976,

330!:

y

g y! = 1 - h  r!dr
1

0

1 H1 y!

and, using integration by parts,

v�= g y!dy
0

rh  r!dr .
1

D

js an unbiased estimate of f�!. The estimate of D based on f, namely nf /<2L!,
r' r

reduces to the Hayne estimate if �! is true, that is if f OIr! = 1/r. Gates
<l969! postulated the exponential models f z! = A exp  -! z! and f r~z! =
A exp[- X r-z!l which lead to �! once again so that Wayne's estimate is unbiased
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However, he then assumes that once the observer passes the animal the flushing

probability drops to zero: this is what happens in the circular flushing region

model.

In pt actice it is not possible to distinguish between fi<r ! and hi r!
from the data, with the exception that fi is violated when the animals flush be-
hind the observer. A basic assumption in both approaches is that the sighting

 flushing! of one animal is independent of the sighting  flushing! of any other.

However, as pointed out by Eberhardt, "group flushes" only pose a problem if

there is a correlation between flushing distance and group size. Otherwise we

can assume that the groups flush independently and estimate the number of groups

using the above methods; we can then multiply t'his estimate by the average group

size. One approach which has considerable possibility is given by Cook and Mar-

tin  l974!. They make the reasonable assumption that the probability of an ani-

mal being seen depends on the size of the group which flushes with it: the larg-

er the group, the hIgher the probability. Clearly further research is needed on

this problem of group flushing, and any model used should distinguish between

any nonrandomness of the population and dependence of flushing distances. For

example, it is not clear which is the case in the models suggested by Sen et al.

 I974, 338!. As already mentioned, nonrandomness need not bias the density esti�

mate if the transect is random, though the theoretical variance will be affected.

Finally, there Is one other problem relating to the placing ot tine

transects. It is often convenient, in practice, to have 'the transect running the

full length of the population area so that the length L of the transect is a ran-

dom variable if the transect is randomly located and the population area Is lr-

regular in shape. This problem applies to all transect techniques and appropri-

ate methods of estimation are discussed in Seber  l979!.
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is convenient to regard a cluster of overlapping particles as a single "clumped"

particle. Thus we regard the population as consisting of, say, M nonoverlapping

clumped particles of area a.  i = 1,2,...,M!: thus
I

M

$ a./A
i=i

Let m be the number of clumped particles and n the number of particles

intersecting the transect. For the ith clumped particle  i = 1,2,...,m!, let yi
be the length of the intercept; and for the jth particle  j = 1,2,...,n!, let w .

J
be the maximum perpendicular distance between tangents to the particle that are

para l lel to the transect  cf., Fig. 1 with R a rectangle!. In t' he case of par-

tial intercepts, a suitable convention is to choose one end of the transect at

random and complete partial intercepts at this end; partial intercepts at the

other end are ignored. We shall consider three different models:

 I! R is a rectangle of length L and width W: A = LW The

transect runs the full length of R and is parallel to

the sides of R. It is chosen by selecting a point on

the base line at random.

 ii! R is any shape. A base line BC is established and W is

now the maximum perpendicular distance between tangents

to R that are perpendicular to BC  see Fig. 'I!. A point

g is chosen at random on BC and the transect is then

drawn perpendicular to BC with its extension passing

through Q. In this case the transect has random length.

 iii! R is any shape. The t'ransect is located at random by

choosing its center at random  for example by choosing

a point at random ln a rectangle containing R and using

this point if it falls in R!, and then independently

choosing its orientation with respect to some fixed

base line: this orientation could be fixed or else

chosen at random. In this model we assume that the par-

ticles are small compared to L, and L is small compared
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to the size of R so that boundary problems can be ignored�

such as part of the transect lying outside of R.

Theory
Mode I   i !,

ZBHmation. Although this model is a little artificial it provides the

simplest introduction to the basic theory. It does, however, have application to

studies involving the comparison of two or more species as for example in some

microscope studies  Seber and Pemberton, 1979!. Also, because of boundary prob-

lems, model  iii! might be best handled by setting out a rectangle within R and

using model <i!.

We shall now prove that

m

I= I

and

n

D = ! w. /L
J

�!

into very small elements 5L such that an element either Iles entirely Inside a

particle or entirely outside a particle; the probability of lying across the

boundary is negligible. If the line Is randomly placed then each SL is randomly

placed and lies within a particle with probability A. Thus If 6y is the observed

length of Intercept of 6L then E[6y! = 6L.!l. + 0. I-A! = 6L.X. Since E[ZyI] =
E E[6y} = ! E6L = AL, ! is an unbiased estimate of A. This intuitive argument

applies to both models  i! and <iil!, in which L is constant.

are unbiased estimates of X and D respectively. In words,  I! states that the

proportion of R covered is estimated by the proportion of the l ine covered, The

same is true in three dimens1ons. The proportion of volume occupied by objects

is estimated by the proportion of a random plane transect intersected or the pro-

portion of a random line transect intersected.

A heuristic proof that 1 is unbiased is as follows. Divide up the line
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Theory. In Fig. 1, on page 39  with R a rectangiei, Q is chosen at

random on BC so that u. has a uniform distribution on [O,w.] ~
I I

a function u

Thus, since y. is
I

w.
I

1 a
E[y ~intersection] = � y,du,

i w. I I w.

0
I

and

Pr[intersection] = w /W = P. , say.
I

For i = 1,2,...,M let

Y. = y. with probability P.,
I i I

0 with probabi I ity 1-P..
I

E[Y,] = E[Y.Iintersection]Pr[intersection] +
I I

E [Y i I no i ntersect Ion] Pr [no i ntersect i on]

E[Y Iintersection]P + 0. l-P.!
i i

aiP./w.
i i

a./W ,
I

and

Thus with each clumped particle we associate a random variable Y which is zero if

the particie is not intersected, and y if it is. Since
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it fol lows that

M

E[!] = $ E[Y ]/L
i=1

M

  ai/LW
i=1

�!

-1
SIml larly we can define Z. = w. with probabi I ity P. and zero otherwise

J J J
so that

E[Z,] = w. P. + 0. �-P.! = 1/W,
J J J J

N

  Z.
J

! E[Z.]/L
J

E [D]

e/LW

D

V~ance estimates. We note that we have not required the particles to

N

V[5] = j V[Z.]/L
J=l

be randomly distributed, only that the line transect be randomly sited. If we

require variance formulae for the above estimates, then we need to make some as-

sumption about the distribution of the particles. For example, If the particles

are randomly distributed then the Z. are mutually independent and
J
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where

E [Z.]
J

-2
w. P.

J J

�  E[Z.]!
J

V[Z ]
j

- W

1 1

w.W 2
J

Thus

N
-l N

2 ~ 2 2L2w j=1 " L2W
�!

which has unbiased estimate

n
1 -2 Dv[0] = � ! w.
L2 . 1 j A

 IO!!

1 2 Lw 3V X! = � f y, � � yL2 '-1 i 3Ai =1

2g L2
i=1

�!

"This assumption effectively implies no overlap.

A
However, finding V[A] ls much more difficult. Assuming the clumped particles
are convex+, an unbiased estimate of V[X] is  Lucas and Seber, 1977, equation
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as Ly./A wi I I be smal I. However, such formulae tend to be of largely academic in-
I

terest only as populations are rarely randomly distributed and the 2, are usually
J

correlated. In this case, variance estimates are best obtained by replication

and by using the following result.

Lemma: Let xl,x2,...,xk be independent random variables with common mean 6 and

variances e.  i = l,2,...,k!. Then2 I

E[Z x -x! /k k-I !] = V[x!

It is not always appreciated that the above result holds for unequal variances

v . Thus in practice we would use either k transects or perhaps a single tran-
2

sect divided into k segments to give k estimates of each parameter.

P7arct auticles. The above technique can be used for studying plant cuti-

cles from rumen and fecal analyses. For example we may wish to estimate the pr o-

portion, by area, of the leaf cuticles that belong to a given species by examin-

ing a slide under a microscope. Thus lf there are two species, with dashes rep-

resenting the second species, we wouid wish to estimate

M M M'

$ a,/ $ a. +   a!
i=i i=1 i=i

Several procedures have been suggested and they all involve choosing a line tran-

sect on the slide and noting the particle intersections. The most common method,

which might be called the "hit or miss" method or the count method, consists of

simply counting the number of cuticles of each species that intersect the line

 Anthony and Smith, I974; Anthony, I976; Staines, 1976!. Although this method

is quick and easy, it will only work if the size distribution of each species is

the same. Another method, which might be called the squared-intercept method,
2

consists of using the squared lengths y.  cf., Dunnet et al., 1973!. However,
I

this method should not be used as it has no theoretical justification and is not
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supported by empirical investigations  Seber and Pemberton, 1979!. The most nat-

ural estimate of ~ is

m m IT!

D/ D + D'!

-1
Let Z =   w., then Z and L are now

j

2 2and pL, variances a and a, and covariance
has a uniform distribution on [O,W]  Figure l

both random variables with means uZ

a, From �! uz = N/W and, since u
!

W'

Ldu = A/W
L W

0

rlgure l Transect of random length.

though this estimate will be biased as E[U/V] g E[U]/E[V] for correlated random

variables U and V. however, if K transects are taken, then a jackknife method is

available which gives an approximatety unbiased estimate of TT, together with a

variance estimate: for further details see Seber and PeITlberton �979!..

Model  ii!
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Hence, by 0he 6-method  Seber, [973:7!,

E [6] = E [Z/L]

0  1+b !, say

and 0 is biased. However, if we use K transects then a jackknife estimate with a

smal 1 bias can be obtained as fol lows  Seber, 1979!:

Let  Lk,Zk!, k = l,2,...,K, be the observed values of  L,Z! from K tran-
sects, and consider the pooled estimate

0 = I Z /E Lk

Then, by the 6-method,

E[0] " 0[1 +  b/K!] �!

Def ine

D k! = KD �  K-1!D

K

DJ =   0  !/K .
k=1

Then DJ, the so-cal led Jackknife estimator, has the property that the bias term
-1of order K in �! is now el imlnated. Also the variance of DJ can be estimated

by

-2where the terms neglected are of order K if the pairs  Lk,Zk! are mutual ly in-
dependent, or approximately so. Let D k  k = l,2,...,K! be the estimate with the
same form as D but based on K-1 transects with the data from transect k omitted.
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s = J  D ! -D! /K K-1!2 " - 2
k= 1

and  D -D!/s is approximately distributed as the t-distribution with K-I degrees
J

of freedom.

The jackknife method is reviewed by Miller �974, mainly theory! and Bis-

sell and Ferguson <1975, pract'lcai aspects!, and investigated further hy Hinkley

�977!. Further generalizations, including the so-called "generalized" jackknife,

are given by Gray and Schucany �972! and Sharot �976 a,b!.

lf the particles are randomly distributed, then an unbiased estimate of D
is available and a regression model can be developed. Thus suppose, for the mo-

ment, that L is regarded as fixed and the particles can be moved about at random.
Then using the same arguments which led to equations �! and �!, but with

P . = Lw ./A  l.e., W is replaced by A/L!, we have
J J

E[Z~ L] = OL

and

2
N 1 Nl

V[ZIL] = � $ w. - 2
A, j Aj=l

N

~ <w.1 �  L/A! >
A J

since, in practice, Lw. « A. Hence
J

E[D] = E[Z/LIL]
L

E [D]
L

D
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and D is unbiased. If we have K transects, then

E[Z ~L ] = DL

and

2

where a is an unknown constant. Thus a plot of Zk versus L< should be linear2

with slope D, and we can obtain a weighted least squares estimate of D, namely

D = E L D /Z L� = E Z /E L

This has variance estimate

A2v = a /Z L�

where

A 2 A
a = Z L  D -D! / K-1!

k k

Assuming norma I ity, an approximate 95 percent conf idence Interva I for D is given

by D + c/v , where c is the upper 24 percent point of the t-distribution with
K-1 degrees of freedom. The same method can be .appiied to A.

Case  Iii!

The theory ls now complicated by the fact that we have to consider the

orientation 8 of each object. Here 8 could be detined as the angle between the

transect and a well-defined chord of the particle as the longest chord. If we

treat the angles 8 . as constants and set P. = w . 8 .! L/A, where w . = w . 8 .! is now
J J J J J J J

a function of 6., we find that E[D~ 8.!] = D. However, it the transect has a
J J

random orientation, that is 6. has a uniform distribution on [O,m!, then
J





Thus if the needles represent logs an the forest floor, then possible applications

of the above theory are  De Vries, 1979!  i! x. = volume of jth log so that gl is
J

the total volume in area A, <ii! x. = 'I and l|I = N, the total number of logs, and

<iii! x, = weight of jth log so that 0 is the total weight.
J

Lange8t chozd. In conclusion, I mention brief ly the work of Mclntyre

�953! based an the longest chord of a particle paral lel to the transect. This

method, discussed briefly in Lucas and Seber <1977, 621!, requires that all the

particles are undistarted magnifications or reductions of a common shape, and is

therefore of limited application.
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N = n 1 n2"2

the so-called Petersen estimate or I fncofn index  though the term index is mis-

leading!. If ni and n2 are regarded as constants and sample 2 fs a simple random
sample  i.e., a random sample without replacement!, m2 has a hypergeometric dis-
trfbution with probability function

n N-n

f m n,n !
I i

2 1' 2 m n2m �!
'2

It transpires that N, suitably rounded to an integer, is the maximum I ikel ihood

estimate of N for this distrfbution. However, a modif ication

 n +l! n +i!

 m2+1! �!

is unbfased when n1+n2 > N, and approximately unbiased otherwise. An estimate of.
the variance of N" with similar properties is also available, and large sample

confidence Intervals based on N" or E[m2]  = nfn2/N! can be constructed. Charts
are available choosing ni and n2 to achieve a prescribed accuracy of N  fuil de-
tails are given in I, Chapter 3!.

The population is closed so that N is constant.

AII animals have the same probability of being

Marking does not affect the catchability of an

Sample 2 is a simple random sample, i.e., each

samples has an equal chance of being chosen.

 a!

caught in sample 1. b!

 c! animal.

N
of the possible

n2
 d!

 e! Animals do not lose their marks between samples.

<f! AII marks  or tags! are reported on recovery in sample 2.

In using a Petersen experiment a number of basic assumptions must be sat-

isfied. These can be expressed various ways, but from a practical viewpoint they

amount to the following:



The effects of departures from these assumptions on N are discussed mathematically

in some detail in I so we just mention the main points. For example, if  d! is

likely to be false, then double tagging can be used to provide a correction factor

for the observed number of tagged animals in sample 2: those which have lost one

tag can be used to estimate the number losing both. Suppose m and md are the
s

numbers of animals in sample 2 with single and double tags respectively and let w

be the probability of losing a tag  assuming the tags are indistinguishable and

independent!. Then an estimate of m2, the  unobservable> number of animals in
sample 2 originally tagged in sample I, is

m = �-7t!
-2

 m + 2m !/2 l - 0!
s d

 m +m !/ I - 8 !2
s d

where it = m / m + 2m ! and m + m is the "observed" number of animals tagged in
s s d s d

sample 2. This estimate, obtained initially by Chapman et al.  I965, 340!, has

also been derived independently by Cormack  l968!, Caughley �97I!, Hubert et al.

 l976! and derived theoretically in I p. 96 where a large sample variance is also

given-

Assumption  f !, which is appropriate when the tags are reported by hunters,

commercial fishermen, etc., can be tested if part of sample 2 has a 100 percent

tag reporting rate � say, by experienced observers. Assumption  d! will depend on

 b! and  c! as any variation in the catchabillty of the animals, whether natural

or induced by the handling and marking, will lead to a non-random sample 2. In

fact departures from  b! and  c! are difficult to differentiate as a variable

catchability means that the more catchable animals are caught in sample 1 and,

for a similar method of taking sample 2, the marked wiil tend to have a higher

probability of capture in sample 2: this leads to the underestimation of N. It

transpires that in just one case can the effect of variable catchability be elim-

inated, namely when entirely different methods are used for taking each sample:

the catchabllity in sample 2 is then Independent of mark status.
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Random sam le sizes

Use of the hypergeometric distribution �! emphasizes the fact that it is

basically the activity of ihe experimenter that brings about random sampling.

However, another approach in which randomness is related to the activity of the

animals, considers the N animals in the population as N independent multinomial

trials, each with the same pro'bability of belonging to a given capture-recapture

category. In the Petersen experiment, there are four categories: caught in sam-

pie 1 only, caught in sample 2 only, caught in both samples, and caught in neither

»mple, with respective probab!I!ties P ,P ,P12 and Q = 1-Pi-P2-P12 = 'I-P!. Thus
1  = nl 2!, a2   2 m2 ' 2 2!, and N-a1 2 12   N-r , whe« r is the

total number of different animals caught in the experiment! are the numbers caught

in the four categories, then the joint probability function of the random vari-

ables a1' 2 a 12

�!

= P iq2 2 = q1P2

determines the triple  ai>, ai+a12, a2+a12!, and vice versa, so that substitut ing
for the P's gives us

  2"1"2 = « 1'2'12!

�!

f m21n1' 2 1' 2

lf p, = 1-q ! is the
i i

dent so that capture

N! al a2 al2 N-r
12 ... N- 	a1 a2 a12' -r 1 2 12

probabi I ity of capture in sample i, and samples are indepen-

in sample 1 does not affect capture in sample 2, then

17 1 n ~ 1 2 Now the triple  a12' 1'a2

NI nl N-nl n2 N n2
 n -m !l n -m !!m l N-r!! 1 1 2 2p

1 2 ' 2 2 2

2 N

f m ~n ,n ! II n. p. q.
i=1



where f m2~n>,n2! is given by �!. Thus �! foll,ows from �! by simpiy treating
the sample sizes ni as random variables. If the sample sizes are fixed, �! is
the appropriate model. On the other hand, if the experimenter controls the samp-

ling procedure by the effort he puts in, that is fixes pl and p2, then �! is the
appropriate model. However, under �!, N of �! is still the maximum likelihood

estimate with essentially the same asymptotic variance. The fact that sample

sizes can be treated as fixed or random with tittle change in the theory is a com-

mon feature of capture-recapture models. It stems from the fact that for large

samples, ni and E[n.] are essentially interchangeable. Thus lf x represents the
set  nl,n2! and E[x] = 6 , then, since E[N~n>,n2] = N,

var[N!nl] = E  var[Noix]! + var  E[N~x]!
nl n]

E [var[Noix]! + var  N!
nl n]

= E . g x!! + 0, say
nl

var[N] "- E  g x!!
x

S imi I ar I y

= g 8!  to first order of approximation!

- l. var [N ~ x] !
x=8

In estimating variances we replace expected random variables by random variables

so that estimates based on var [N] and var [N~x] are essentially equivalent.

In practice, samples are frequently neither completeiy fixed ln advance

nor completely random as other factors such as finance, weather, etc., can affect

the length of an experiment, once ii has started. For this reason there has been

some interest in sequential-type experiments in which sample 2 is continued until

a prescribed number of marked or unmarked are caught in sample 2  cf., I, p. 118!.

A Bayesian analysis of the problem and a comparison with other schemes is given

by Freeman �973 a,b!, Kuno �977! describes a model in which The second sample

if continued until N is estimated with a prescribed coefficient of variation.

Sometimes sample

mals are merely observed

binomial with parameters

are given in I.

2 is taken with replacement, for example when the ani-

and not actually captured. In this case f m2[nl,n2! ls
n2 and p = nl/N. Further details of these modifications
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cient for N so that f  a !~r! contains the same information about N. Using some
w

general theorems about a class of factorial series distributions, of which

f  a !~r! is a member, Berg �976! obtains a ratio type estimate N which is mini-
w

mum variance unbiased if N < Z n, . He provides a useful recurrence relation for
overcoming some of the computational difficulties in finding N and its variance

estimate. When s = 2, N reduces to �!.

Lo -linear models

Another method of estimating N from a Schnabel census which shows some

promise is to use the theory of incomplete contingency tables. Since there are

s samples, the number of different capture histories is 2 which can be arrangeds

in an s-dimensiona I contingency table. However the number of animals in one of

the cells, namely the N-r animals not caught at all, is unobservable so that the

contingency table is incomplete. By fitting a suitable log-linear model to the

rest of the table, N can be estimated. A variety of models can be fitted depend-

ing on how many interaction terms are included. These interaction terms corres-

pond to dependencies between various samples and for brief readable discussions

of the problem see Bishop et al. �975, chapter 6! and Cormack  I979!. When the

samples are independent so that all the interactions are zero, the estimate of N

obtained ls slmpIy N.

Modellin catchabillt

We note that the as umptlons underlying the Petersen method must apply to

all the samples in a Schnabel census so that any departures from these assumptions

can seriously affect the validity of N. Since variation in catchability seems to

be a fact of life, a general package of models has been developed by Otis et al.

  978!, which allows this variation to be modelled in various ways. They present

six models: Mt  variatlon with trapping occasion or time, given by �!!, Mb
 variation by behavioural responses, e.g., trap shyness or addiction!, Mh  varia-
tion by individual response or heterogeneity, e.g., size selectivity ln electro-

f ishing! and various combinations Mtb, Mbh, M and Mtbh The authors also in-
clude the model Mo in which there is no variation  i.e., �! with p. = p!, and a

I

generalized removal model in which removal corresponds to tagging.

If p.. is the probability that the ith animal  i = 1,2,...,N! is caught
IJ

in The jth sample  j = 1,2,...,s!, and we can assume that the animals are inde-
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pendent of one another as far as catching is concerned, then the likelihood func-

tion Is

il H p..J . � � P..! Ij
IJ Ij

where x.. = 1 if the ith animal is caught in the jth sample and x.. = 0 otherwise.
I J I J

The various models can now be described mathematically by specifying p , for ex-
Ij

ample M  p.. = p.!, M  p.. = p. where t' he p. are a a random sample from some dis-t ij j ' h ij i I

tribution!, Mbh  p.. = p. for any first capture and p.. = c. for any recapture!
IJ I IJ I

etc. A standard aigorlthm is used to calculate the maximum likelihood estimates

for the models M0, M , Mb and Mbh, the last model being regarded as the most
realistic and the most useful' The method used for analysing M h can also be ap-
plied to so-called "removal" experiments in which animals are removed from the

population on capture. Suitable estimation procedures are not yet available for

M , M and M , but a generalized jackknife estimator due to Burnham  cf.,

Burnham and Overton, l978! is available for Mh. This method utilizes the data on
frequency of capture and largely replaces various other ad hoc frequency of cap-

ture models which have been shown to be unreliable for estimating the number  N-r!

with zero frequency  cf., Cormack, 1979!. Otis et al. �978! discuss the robust-

ness of these estimates and the usual confidence intervals estimate + 1.96 stan-

dard deviation. They give a procedure for selecting -a model and discuss the im-

portant aspects of design relating to number of traps, trap spacing and number of

samples s. The authors also discuss various tests of closure, including one of

their own, and conclude from the general insensitivity of these tests that the

best evidence for closure is biological rather than statistical. The experiment

should be designed to approximate closure, otherwise more general methods such as

those described in I chapt'er 5 should be used.

Converting Tota|s to Densities
A major problem in population studies which has received insufficient at-

tention in the literature is the conversion of total counts, or counts on sample

plots, to density estimates. If grid trapping is used, then simply dividing the

total count  N! on the grid by the area enclosed  A! by the grid will generally



lead to a severe overestimation of the population density. This problem ls due to

what is commonly known as "edge effect"; that is, traps on ihe boundary of the

trapping area tend to catch more animals than inner traps. This edge effect is

due to Immigrants, and animals living outside the trapping area which have home

ranges overlapping the trapping region.

Following Dice �938!, a common technique for calculating the effective

trapping area is to add to A a strip of width W, where 2W  = R! is some linear

measure such as the average diameter of the home range of an animal.

Home ran e estimation

C'~zo2es or e22ipeee. Although numerous methods of estimating the shape

and area of the home range from recapture data have been suggested, particularly

for small mammals, they are generally unsatisfactory as they are basically ad hoc

and the results tend to vary with trap spacing  Faust et al., i971!, number of

captures  see below!, species, season  Briese and Smith, 1974!, and size of study

area  Wlerzbowska, 1975, 17!. The concept of the center of activity has also

been criticized on the grounds that it may not have any biological significance

 Sin'Iff and Jessen, 1969; Wierzbowska, 1972; Smith et al., i973; Koeppl et al.,

1975, 86!: it is simply an average of points of contact  Hayne, 1949!. In the

past, circular home ranges were widely used, though ellipses now appear to be

more popular  cf., Jennrich and Turner, l969; Tanaka, 1972; and, for further ref-

erences, Mazurklewicz, 1971 and Wierzbowska, 1975!. However, Metzgar �973a!,

using smoked-paper tracking and the Kolmogorov-Smirnov test, judged that 10 of his

22 home ranges were circular. Also Maza et al. �973! "failed to find evidence

to indicate that the home range is other than circular." A number of authors ef-

fectively assume a circular home range by their use of the term recapture radius

 Burge and Jorgensen, 1973!.

Bivariate dis4z'ibu5icvw. As the probability of capture tends to decrease

with increasing distance from the "center" of the home range, various bivariate

distributions have been fitted to the distr'Ibution of probability: this concept

has recently been extended to three-dimensional home ranges  Koeppl et al., 1977;

Meserve, 1977!. Although the bivariate normal provides a reasonable model in

many situations  e.g., circles � Calhoun and Casby, 1958; Maza et al., 1973; clr-

cles and ellipses, Van Winkle, 1975: ellipses � Mazurkiewlcz, 1971; Koeppl et al.,

1975; Dunn and Gipson, 1977; Randolph, 1977; Hawes, 1977!, there are cases when
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Is not appropriate  e.g., Metzgar, 1972, 1973a! and a more general bivariate
model is required. For example, for a nonhomogeneous habitat such as an ecotone,
Van Winkle et al. �973! present a non-normal model with independent marginal
distributions. However, several authors  Tanaka, 1974, 126! feel that the above

bivariate models are inappropriate for mammal populations, particularly small
rodents, and recommend methods which do not require the concept of center of act-

ivity, or any assumptions about the shape of the home range; for example, the

method of Wierzbowska <'l972!. In comparing various methods WIerzbowska  l975!

concludes that her own 1972 method and a method of Tanaka �972!, who proposes

using W = Jab where 2a and 2b are the observed range length and width <ORL and
ORW respectively!, are the most versatile methods. Wierzbowska uses the concept

of a random walk which also forms the basis of further, but laborious, methods

proposed by Morisita  cf., Tanaka, 1974!. However, the assumption of random walk-

ing over a home range may be unrealistic  Ambrose, l969; Siniff and Jessen, l969!.

A further problem is that there may be parts of the grid area which are seldom

or never entered by animals  Wallin, 1971!.

Trap-~euealea". mneme. One of the difficulties of the trapping method is

that the horne range of an animal may change during the course of an experiment.

This could lead to an animal visiting more different traps with a consequent over-

estimate of the home range area  Andrzejewski and Wierzbowski, 1970!. Even if the

horne range remains unchanged there will be a tendency for the trap-revealed range
to grow as the number of captures increases, but it wiii level off after a certain

number of captures. Some authors put this figure at IO; others at 6, 5, or even

2 if the population is large enough  Wierzbowska, 1975, 56!, lt is clear that

stochastic methods are needed for assessing trapping data rather than using such
simple expedients as joining up outermost points  and possibly adding a strip of
width equal to half the trap spacing! to obtain a map of the home range. Another

problem in home range studies is to distinguish between the permanent resident

and the immigrant. At present there seems to be a lack of objective methods for

distinguishing the occasional sally from the normal home range movements.

We conclude that it is not easy to get an accurate picture of the shape

and size of the home range using trapping as trapping can affect animal behavior.

For this reason the home ranges of small mammals have also been studied using

radio telemetry  e.g., Ooebel and McGinnes, 1974; Trent and Rongstad, l974;
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Banks et al., 1975; and, for a mathematical analysis, Dunn and Gipson, 1977!; re-

mote censusing  Marten, 1972, 1973!; radioactive tracers  Ambrose, 1969, 1973!;

Gentry, Smith, and Beyers, 1971!; footprints on smoked paper  Metzgar, 1973a! or

in the sand  Sarrazin and Bider, 1973!; and bait with fluorescent pigment  Franz,

1972! or colored wool  Ryszkowski, 1971!. An interesting comparison of trap- and

track-revealed home ranges in Pe20mpacua is given by Metzgar �973b!: see also

Metzgar �973c!. An index of home range size based on an exponential model is

given by Metzgar and Sheldon �974!.

Radio telemetr

In recent years telemetry has been used extensively for studying the move-

ments and behavior of animals. At present I have a bibliography of over 80 arti-

cles published ln the 1970s describing the application of radio tracking to many

species of birds, mammals and fish  for a review of the latter see Stasko and

Pinock, 1977!. Although the bibliography is incomplete it does at least |ndlcate

the considerable possibilities of such a method. Some of the papers refer to the

design and monitoring aspects of a radio transmitter  e.g., design � Kolz et al.,

1972, 1973; Corner and Pearson, 1972; Luke et ai., 1973; Bray and Corner, 1972;

Pedersen, 1977; monitoring � Gilmer et al., 197i, 1973; Lund, 1974; Hutton et al.,

1976; I-loskinson, 1976, Whitehouse and Steven, 1977; Wolcott, 1977!, and trans-

mitters are sometimes used to relay other physiological information such as body

temperature and heart rate  Lonsdale et ai., 1971, Skutt et ai., 1973, Koiz et al.,

1973, Langman, 1973!. However, transmitters should be properly designed for the

particular species being investigated as they can modify the behavior of an ani-

mal. This has been demonstrated clearly in the case of birds  cf., Giimer et al.,

1974! where a package which appears satisfactory for one sex or one avian species

may not be tolerated by the other sex or another even closely related species.

Unfortunately, there do not appear to be many articles on the effects of radio

packages and comparing them with other forms of tagging; some of these studies

are Boag �972!, Boag et ai. �973!, Giimer et al. �974!, Brand et al. �975!,

McCleave and Stred �975!, Lance and Watson �977!, and Facey et al. �977!.

Assessment lines

Even if the home range is known accurately there is still the problem of

choosing W, some appropriate linear measure of the home range. Clearly the simp-

lest approach is to treat W as an unknown parameter and devise a model for the



joint estimation of N and W. One such approach involves the use of assessment

lines which are generally lines of equally spaced traps cutting the sides of the

trapping grid  usually at right angles! and extending from within the grid to out

beyond the effective trapping area. An assessment line can hopefully be used to

"calibrate" the trapping rate across the boundary of the grid, and The points of

discontinuity of this rate along the line provide an estimate of W  Smith et al.,

1971; O'Farrell et al., 1977; it is a.iso used for the removal method!. However,

this method is somewhat subjective and an alternative method of estimating the

effective trapping area is given by Swift and Steinhorst �976!. They make use

of the plausible assumption that the marked proportion of. animals caught in a

segment of an assessment line falls off to zero as the edge of the effective

trapping area is approached.

A different assessment method Is given by H. D. Smith et al. �972!, who

surround the grid by a dense band of traps, which they call a dense line. These

traps provide information on other parameters, such as mortality and migration

numbers, as well as population size. An extension of this method which is sup-

posed to apply even if the band is omitted is given by Jorgensen et al. �975!.

These various methods are also surveyed in Smith et al. �975!. However, the

above methods of determining the effective trapping area are rather subjective

and depend very much on trial and error. Severai authors  Hagen et al., 1973;

Tanaka, 1974; Barbehenn, 1974; and Tanaka and Murakami, 1977, ii8! do not support

the use of assessment lines on the grounds of unrealistic assumptions and the

labor involved in the field.

Method of selected rids

the problem is to estimate W directly from a

assumption is that W is independent of the

 k = 1,2. ..K!

An alternative approach to

series of selected grids. The key

grid size so that for the kth grid

N =D<A�+PW+rrW!,2

where D is the population density, and Nk, Ak and Pk are the "effective" popula-
tion size, the area and perimeter respectively of the kth grid. MacLulich �951!

suggested using two such grids and solving the pair of equations for D and W,

with each Nk replaced by its estimate Nk.
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Hansson �969! suggests using a single grid and assumes that there is an

inner subgrid for which the edge effect is negligible. However, Tanaka �972!

gives evidence that the edge effect, although decreasing as you move into the

center of The trapping grid, does not vanish for some central area.

Another method which avoids much of the subjectivity associated with the

previous method is described by Otis et al., 1978. They suggest using a single

large grid and selecting K subgrids nested within each other inside the grid.

lf yk = Nk/Ak then we have a nonlinear regression model of the form

Yk = D I + akW + b W ! + e , k = 1,2,...,K ,2

k

where the ak and b are known constants  cf., eqn. 8!!, and E[e i = 0 if Nk is
unbiased' As the grids are nested, the y , and therefore the "errors" e , will

be correlated. The authors suggest putting the correlation between y. and yk
J

equal to the proportion of overlapping area between grids j and k  including their

boundary strip!, and carrying out a generalized nonlinear least squares to esti-
A

mate D and W. The estimates N can be based on either removal trapping or cap-

ture-recapture data. Useful practical details about the design of such an experi-

ment with regard to choosing the number of traps, trap-spacing, etc., are given

in Otls et al. �978!.
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THE MULTI-SAMPLE SINGLE
RECAPTURE CENSUS

Suppose that releases are made at times t ,t ,...,t and recapture samples1' 2' ' s

are taken at times t 1 t',...,t',. ~ .,t' where t < ti < t2 « ... t < t' < t'1' 2''' ' s'' '' s+k 1 1 � 2 � '' � s s s+1

< t' k . We are ailowing for the possibility of k further recapture samples
s+k

at times t' 1,...t' k without corresponding releases. The following assumptions
are now made:

Every marked individual has the same probability p.  = 1-q.! of being
I

caught in the ith sample at time t', given that it is al ive and in the

population just before time t!  i = 1,2,...,s+k!.
I

For i = 1,2,...,s, every marked individual has the same probabi I ity 1-$.
I

of dying or permanently emigrating in the time interval t. to t !, given
I I

that it is a I ive and in the population just after the ith release at

 a!

time t..

For i = s + 1, s + 2,..., s + k, every marked individual has the same

probability 1-4, of' dying or permanently emigrating in the time interval
t! to t!, given that it is alive and in the population just after the

i � 1 I

ith release time t!

Every marked individual has the same probability I- p. of dying or perma-
I

nently emigrating in the interval t'. to t., given that it is alive and
i-1

in the population just. after the sample at time t! 1  i = 2,...,s! ~i-1

Either there is no emigration, or the emigration is permanent, so that
em grants can be regarded as being "dead."

 c!

 d!

 e!

General Model
We shal I consider a particular capture-recapture model that has wide ap-

plications to exploited open populations. In this model the animals are removed

on capture and tagged animals are released into the population from outside as,

for example, in birdbanding and fisheries. We therefore have several samples,

but animals are only recaptured once: for this reason, I call the model the multi-

sample single recapture cen.us  Seber, 1962 and 1973, calied I below!. Contrary

to the usual capture-recapture models for open populations, we shall allow the

possibility of releases and recapture samples being made at different times.
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s m. R.-r,

1  B.  a, B. ! ' ...  a.a....a B ! �-8. !
i=1

I I I+1 i i+1 '' t-1 t

s-1 T. � m. m. R,-r. m R-r m
1  a. B �O ! B �8 ! 'y

i=1
I i s s s Yt

where

t = s+k,

B. = p.,p.  i = 1,2,...,t! �!

$.q.%. i = 1,2,...,s-1!
i 1 I+1

g q  i = s,...,t!

y, = a a ,...a . 1B,  j = s+1, ,t!
J s s+1 j+1 j

and

iBi+1 '' ". 1 ' 't-1Bt ~

where 9. is the probabi I ity of recapture from the ith release. Here R. is the

releases

~s s+1 s+2

s-1 s-1 � s s s+1 s+2

recaptures

Figure 5.1 Pattern of survival probabi I ltles.

Thus if m , is the number from release 1 caught in sample j, the joint distribu-
ij

t ion of the m,, is proportional to  see Figure 5.i!
IJ
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number in the Ith release, r. is the number recovered from R,, m. is the number of
I I I

recaptures  marked! in the ith sample, and T. is the number of different indivi-
I

duals recaptured in the ith sample or later from releases made prior to the ith
sample. Thus T. � m.  = T. � r, = z. ! is the number recovered after the ith

i i I+1 i+1 I+I
sample from releases made prior to the ith sample or, expressed another way, the
number recovered after the  i+1!th release from releases prior to the  i+1!th re-

lease.  For this latter reason I have denoted this number by z. 1 in I rather
than z. as the theory also applies to bird-banding models.! The maximum likell-

I
hood estimates for the estimable parameters in  I! are:

�!

m. r.
IS. = T �,  i = 1,2...s!I

I

�!

m,

y. = 8 ~,  j = s+1 s+2,...,t!
j s m

5

and

Now Robson and Youngs �97I! show that the conditional distribution of m., givenI

r. and T,, is binomial, namely
I

T,-m

which indicates that m is independent of r . Thus, since E[r.l = R.e,i I I

T � m. r
i i I

CL
i T. R.

I I

i+1  i = 1,2,...,s-l!,
i+ 'I
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and f3. is unbiased. Similarly, writing
I

i+1
a

i R, i R.
1 i+1

and noting that the numerator and denominator are statistically independent, leads

to

E[a j =  8 � 5 !R E[r ]

Since r 1 is binominal with parameters R 1 and 6 1 we can make the usual ad-
i+1 i+1 i+1

justment for bias based on the binomial distribution, namely

T.-m, r. R. 1 + 1
I 1 i i+1

a Ti R. r. 1+1I 1+1

Since 9l - 8. = a.8. 1 we have
I I I+1

E[a+j = a. 1 � � - E[r. 1R ] !
I i+1 ]+1

R. 1+1
a 1 � � � 6 !

i+I

i i+1

E[8.] = E E[B. Ir.]
ri I I

8.

E

i

r.
I

R.
I
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and a". is approximately unbiased. The large sample varlances and covariances of

the a". will be the same as those of the e., namely

V[<@,] = g, + + +
2 1 1 1 1 1

E[r.] E[r.+1] E[T.-m.] E[R.] E[R. 1] E[T.]
i+1 I I I I

1
cov t<x.,a ] u.a,

i+1

1

I+ 'I

and

cov [a.,u.] = 0
I J

j > I+1

A general goodness of f it test of the model is given by

s t

T = !    m.� E.!/Ei'

E.. = R.S.  i = 1,2,...,s!
11 I I

A A
R,Q,Q,+1 ... 9, 1g.

A AR Q.Q. 1 ... a y.

 j = i + 1,...,s!
E..

I J  j = s + 1,...,t!

and the terms involving R. � r. are not included in T as their contribution is
I I

zero  since R.� r . � R. �-8. ! = 0!.
I I I

Unfortunately, the basic parameters g , p., and q.  cf., �! and �!! are
I I

not estimable unless some constraints are appl ied to reduce the number of free

parameters. In Seber �962!, we assumed that releases are made immediately after

recaptures so that t1 t. 1 and <p, = 1.
i+1 I+1

f
which is approximately distributed as chl-squared with  s-1! t-1!-4s s-1! degrees

of freedom when the model is true. Here
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Man I y   l 974!, however, assumed that The survival probab i I i ty per un i t time

is constant for the interval between any two releases  though it may vary from

interval to interval!. This impl ies that for the Time interval  t.,t, ! we have
i' i+1

l-h,

and p. 1 = p. ,  i = 1,2,...,s-l!
I I i+1 i

where 5, =  t, � t',!/ t. � t.!, and g. = P. y. may be interpreted as the prob-
i+1 l i+1 i ' i i i+1

ability of "natural" survival  that is, ignoring the recapture sample!. Since we

now have a one-to-one correspondence between the parameters  a.,g.! and  IlI.,p.!,
I I

the maXimum I ikel ihoOd est imateS I[I.,p, SatiSfy Fx. = 0.q. and 5 = 4. Ip, . Thus
I I I I

for i = 1,2,...,s-1,

A A
0- � 8. I]I-

I I I j

and

J
which can be solved for gi and pl. Using the delta-method Manly shows that,
asymptotically,

2 2

2

i E[m,] E[z ] E[T.] Eir ] R,
I 1+1

+ � � p.!
2

l E[r. 1]i%1

� - p.!

~j'~i+1 �-5.p,!�-5, p, ! E[r, ]
i i i+1 i+1 i+1 i+1

a.-1

P; = S.4.

/ � � d.p.!
2

R. I
i+1
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and

cov[$.,$.] = 0
I J

j> i+1

Estimates are obtained by replacing expectations by random

Manly �974! descr Ibes an application of the above

variables.

theory to a moth popula-

tion where it was found convenient to make releases in The mornings and recapture

samples in the evenings. He also considers a special case of the above model in

which p. = p and g. = g  Manly, l975a,b, I977!.

Exploitation Model
Kattmation. In I we showed that the multi-sample single recapture census

could be applied to the siTuation where the sampling  exploitation! is continuous

and tag releases are made at the beginning of each year. Here a. is now the pro-
I

babi I ity of an individual surviving the ith year, and, as it refers to survival

from both natural and exploitation mortality, is sometimes called the total sur-

given by �! estimates of a. and f3. are given by equations �! and �!. Noting
I i

the equivalences z. = T � m. and r. + z. = T., approximate expressions for the
i+1 i i i i i'

variances and covariances of the n. are given above. In fisheries the observed

exploitation rate is an important parameter in its own right so we include the

following results:

2 1 1 1 1

i l E[r ] R. E[m] E[T]
i I I

and

cov[8.,8.] = 0 for I 8 j
I j

If we use the notaTion a. ~ S. and 8. ~ E" , and replace expected random
I i i

variables by the random variables, the above variance and covariance expressions

and 8 lead to the estimates given by Youngs and Robson �975!. These
I

vival rate for year i. The parameter 5I is the probability that an individual is
caught and its tag recovered. in year i : 8 is sometimes refer red to as the ob-

i

served exploitation rate for year i. As the model for this new situation is still



authors also give a number of useful c"raphs for planning such studies, and the

following discussion ls based on their paper, with the above changes in notation.

Zxperimenla  2eaign. Assumin  0. = v., I>. = 5 and R. = R for i = 1,2,...,s,
I

it can be shown that

2
8

F V [e.]
i 8

�- a! �- a !
22

1

s" 1 I s.- I s-   +1
a  l-a ! �-a ! � � a ! � � m !

  = Po [a.],, say!
I

and the authors give graphs of vP. cr[ai] versus o for 5 = 0.01, 0 1 and 0.3, and
different s   = k in their notation!. Suppose that a fishery manarer wishe to

estimate the survival probability for the first year of study of a three-!>ear re-

lease pro@ram and be within + 0 ~ 1 with 95 percent confidence. Then using the ap-

proximate confidence interval ai + .".a[f1!, we have that 2a[v1] = 0.i or o[ei]
0 05. Suppose further that preliminary studies have indicated m = 0 ' '> and 8 = 0 1.

Then enterinp Figure 5.2 with a = 0.6 and s = 3 we have WRv[ai] = 2.3 or
R = �.30/0 05! = 2ll6 so that 211 taos must be released at the beginning of-2=

each of the three years. If a graph is not available for a particular 8 then, for

a conservative R  i.e., too many taos!, we would choose the nearest value below 8

which is c"raphed. liow the maximum value of o[~.]DR is a function of 8 and occurs
l

when l = 2 and s = 3 with ~ at Its maximum value. This relationship is shown

Hppott ca~a testing. Youngs and hobson �975! also give a number of test

procedures for testing the above model �!. Ps pointed out by Robson and Younns

�971!, a test of the model can be obtained from the distribution of the [m..]
I J

conditional on the sufficient statistics  r ,r ,...,r ,T2,...,T !. This condi-
tional distribution has "rank"

s s + 1!/2 - �s � 1! =  s -- 1! s ~ 2!/2 = 1 i 2 + ... + s - 2 �!

and may be expressed as a product of multi--hypergeometric distributions of suc-

cessive I y sma I ler "ranks" s � 2, s � 3,..., 1. Each di stribution leads to an

graphically in Figure 5.3 and gives an upper bound on the number of ta<,s that need

to be released each year in order to have at least the desired level of confidence.
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0.4 0.6 0.8 I.O0.2

Figure 5.2 Relationship of 4 a[bi>] as a function of survival  a! and number of
years of tag releases  s! with a reported exploitation rate  8! equai to 0, i:

from Figure 2, Youngs and Robson   l975!,
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JR

lO

0.2 0.4 0.6 0.8

Figure 5.5 Relationship between 4 o[d ] and il for s=3 years of tag releases'.
from Figure 5, Youngs and Robson   l975!.  My thanks to Douglas Robson for

providing the original photos of Figs, 2 and 5.!



 asymptotically! independent chi-squared test based on a contingency table. The

first table is Table 5.I, and the usual test statistic for homogeneity based on
2this tab le is approximately Xk 2, when the model is true. The second table is

Table 5.2, and the test statistic is asymptotically Xk 3. This statistic is2

approximately independent of the previous test statistic so that the two chi-

squared statistics are additive. The  I-1!th such table is given by Table 5.3,

and the chi-squared statistic for this table is approximately independent of the

previous chi-squared statistics. Proceeding in this manner we end up with

 s � 2! independent chi-squared statistics which may be added to give one

combined test of The model with  s � I!  s � 2!/2 degrees of freedom  cf., �!!.

Certain alternatives to the model can be tested by partitioning each of

the above chi-squares. An important alternative is the possibility of a type

loss or initial tagging mortality  I, p. 231!. A test against this alternative

is obtained by partitioning each 2 x  s � i + I! table, Table 5.3  m".. = m . +
I J 1J

m2. + ... + m..!, into the two tables, Table 5.4 and 5.5. We thus have a parti-
2tion of X . into Xi and X I 1, respectively, The sum of the s � 2 Xi statisticss � I 1 s-I-1'

provides a test against short-term tagging effects.

Table 5.1 Contingency table for testing the
goodness of fit of model   I !: from Youngs and
Robson  I975!.

Table 5.2 Contingency table for testing the
goodness of fit of model  I!: from Ycungs and
Robson �975!.
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Table 5 ~ 3 Tabie to be partitioned for testing
type I loss: from Youngs and Robson �975!.

Table 5.4 Contingency table for detecting type
losses; al l the columns of Table 5.3, but the
first are pooled. From Youngs and Robson, 1975.

Table 5.5 A partition of Table 5.3 involving al I
the columns but the first. From Youngs and
Robson �975!.
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Youngs and Robson �975! demonstrate the above theory and tests on some

data for lake trout.

2natantaneoua morta.Lit@ rates. Let u., u . and Z. = U. + U . be the in-
i' Ei i i Ei

st anianeous natural, exploitation, and total mortality rates respectively in year

year,

-z

a. = e   = S. of 6.2 in 1!
I

I I
�!

and, f rom p. 272 equat i on �. 2!,

c.u .� � a.!/Z.   = c,u , say!
i i Ei i i i

 8!

= p v is usualiy assumed to be constant   = c say!. Then from the
i

1 ikel ihood estimates a. and 8 given by equations �! and �!, we can use
I

�! to obtain the maximum likelihood estimates Z = -log ct. of Z. and
1 1 1

log i. /� � <x.! of G. = c.pEl. Al so using the delta method �, p. 7!,

where ci
maximum

�! and

= -S-
I i

we have

V[Z.] = V[a ] / o.
i 1 i

 9!

and

A A
cov[Z.,Z.] = cov[a,a.] fa.a.

I J j I J
 IO!

lf an estimate of cl is available, then uE], and hence u., can be estimated. A
number of special cases will now be considered.

Suppose that c. = c and p. = p, then using the approximation
I 1

-w -pljliI
�-e ! /w=e

we have

i �, p. 5!. Suppose that a proportion 1 � u. of those tagged and released at

the beginning of year i die immediately after release, and a proportion p. of the
I

tags recaptured in year i are actually reported. Then, if the time unit is one
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�  I +lj
Ei

e � e
+

=e'"

Ei�  v+vE 1 !
1-e

or

-Z
e"-e e � � a.!p ./Z.

-ku
i Ei i

� 1 I

Then rearranging the above equation, and setting $ = e and k = c e , we have

from �!

$ � kg
1 I

change is in The constant k.

Now if just ci = c we have, for large releases,

E[G 1 = G. = cp
i i Ei

so that

E[Zii Z

u. +u
i Ei

1
+   � !E[G.1

I C I

Thus if p. = p or y. = u + ~., where E[e.i = 0, we have the regression model
I I I 1

1
Z. = v+   � !G. +e.

I c 1 I
�2!

Thus a regression of u. versus 6. wilt be approximately linear with the intercept
I I

estimating $, the natural mortality rate. This model, �1!, was proposed by
Youngs  l972!, although he used a less efficient estimate of 8., nameiy 0". = m../R.I I I I I

in his example. lf the exploitation is seasonal then it transpires that the only
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where e. is the "error" satisfying E[e ] = 0, and c can be estimated from the
I

slope of the fitted I ine. This model, together with an example, was proposed by
Youngs �974! with the following changes in notation: G ~ R� a ~ S and 8 ~ f.

It should be noted that some care is needed in fitting  ll! and �2! as they both

are, so-called, "functional relationships"  cf., Seber, 1977, 210, and Ricker,

1973!. Equation �2! is discussed further by Youngs �976, see his equation �!!

from the point of view of uE. varying throughout the year,
Ei

I f p. = u and effort data are avai I abl e then we have the model

E[Z.] = Z = u+ kf.
i I I

0
where f. is the total effort in year I, and least-squares estimates of u and k,

I

the Poisson catchability coefficient, can be readily calculated. Although the Z,
are correlated, the  unweighted! least-squares estimates will still be approxl-

mately unbiased. However, the usual variance formulae for the least-squares esti-

mates will not be correct unless the covariances are small and the variances ap-
proximately equal. A more appropriate procedure would be to use a generalized or

weighted least-squares analysis  I, p. 11! using an estimated variance-covariance

matrix of the Z. obtained from  9! and �0!.
I

If u = p, u = u and c. = c, then o, = a, g. = 8 and the maximum like-I ' Ei E i I I
lihood equations must be solved iteratively. Also p and u can be estimated if

an estimate of c is available. Alternatively, we note that

j-i -Z j-i!E[m,.] = R a 5 = R e J cP , say,
iJ I I 1

where Pl = 8/c, and this leads to The model

E[log R,/m .!] = � [Z + log cp !] + Z j � i + 1!.
i ij 1

This model is considered in I, p. 239, equation �.34!, but with a change in no-

tation for the m.. so that  j � i + 1! becomes j.
IJ



79

Bird-Banding Mod.el s
Time-s ecific model

just adults are banded, then survival is time-dependent only. If we also assume

that the band recovery rate does not depend on age, then we arrive once again at

the basic model �!, which can be best described by the equation

Elm..] � R.~.a.+l...a. 18.  i = 1,2,...,s; j = 1,2,...,t!I J I I I+1 j-1 j �3!

or, in the notation of Brownie et al.  I977! which is given in brackets below,

E[Ri ] N.SiS. 1...S. 1f 'ij i i i+1'' j-1 j

Were R.  N ! is the number released at the beginning of the lth calendar year,
I I

m, .  R, ! i s The number f rom R  N ! recovered in the jth ca I endar, a.  S. ! i s the
I j I J i

probability of survival in the 1th year  " survival rate" in year I! and 9. f.! is
J J

the probability that a band is recovered in year j  the so-called band recovery

rate or reported exploitation rate in year j!. We note that Figures 5.2 and 5.3

can be used for designing such an experiment.

The above model was originally developed independently by Robson and

Youngs <1971! and Seber �970! and is described in the context of bird-banding in

Band returns have been used extensively for estimating survival rates for

birds for many years but it is only recently  cf., Brownie et al., 1977! that

proper statistical models, together with their associated goodness of fit tests,

have been developed. The choice of model depends on whether the survival rate

and band recovery rate are time and/or age dependent. Invariably the recovery

rate is at least time-dependent as the recovery of a band depends on such factors

as the mortality rate and the probability that a band is returned, given that it

is found. If survival is allowed to be completely age- and time-dependent, then

there are too many parameters in the model with a consequent lack of- identifica-

tion, and some constraints on the parameters are needed. These are provided by

the fact that the survival rates  and hence the recovery rates! ot adult birds

tend to become age-independent and depend only on the calendar year. Thus, if
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pp. 240-3. Further numerical examples of this model are given in Anderson and
Ster I ing �974!, Anderson �975! and Brownie et a I . �977, chapter 2, model 1!.
In my approach on page 240 I emphasized the case of non-game birds for which
8, = � � a,!!.,  with a . = $ .!, A . being the probability that banded bird is found
J J J J J J

and its band returned in year j. For game birds, where bands are returned by
hunters, g. can be expressed in the form g. = H,6,, where H. is the so-called har-

J J J J J
vest rate and 6, is the band reporting rate, that is the probability that a hunter

J

wil I report the band given that he has kii led and retrieved a banded bird in year
j. Clearly H. and 6. cannot be separately estimated unless further information is

J
available; for example, 6. is estimated using reward bands  Henny and Burnham,

J
1976!. We note that H. < 1 � a. as 1 - e. also includes natural mortal ity as wel I

J J J
as hunting mortal ity. The relationships between the various parameters are dis-
cussed in detail by Anderson and Burnham �976! and Brownie et al. �977, 14!,
The estimate 5, has been used as an index of hunting pressure in preference to the

J
proportion of bands recovered in the first season after a band release  Anderson
and Sterling, 1974!. The special cases of constant survivai rate  a! and/or con-

stant recovery rate 8 are considered by Brownie et al. �977, models �! and �!!.
These models should be fitted where possibie as the estimation of fewer parameters
leads to more efficient estimates  e.g., Raveling, 1976!. However, explicit solu-
tions of the maximum likelihood equations do not exist and the equations need to
be solved iteratively.

Time � . and a e-s ecific models

For a number of rea ons the recovery rates for newly banded birds may be
different from those of birds banded in previous years. The above model �3! has

been modified by Brownie et al. �977, 30! to deal with this generalization.
Further adaptions have been given by Brownie �973!, Brownie and Robson �976!,
and Brownie et al. �977, chapter 3!, which allow for the survival and recovery
rates to be age-dependent with respect to the two groups young-adults  adults
being birds older than one year! or the three groups young-subadults-adults  more
than two years old!. These models assume that only two groups, young and adults,
are distinguishable � the usual situation ln practice � and that separate records

are kept for the numbers released and recovered from the two groups. Models where

the three age groups are recognizable are given by Brownie �973! and discussed

in detail by Brownie et al. �977, Chapter 4!. A two-group model which imposes



some constraints on The parameters for The young birds is given by Johnson �974!:

he assumes that two proportiona I ity factors relating young to adult parameters

are constant over time.

For many species it is easier to band the young than band adults so that

there is a strong temptation to band only the young. However, Brownie et al.

�977, 112-3! demonstrate that this is a pointless practice as the parameters are

no longer Identifiable  that is uniquely determined from the model! and therefore

cannot be estimated. This lack of identifiability is due to the fact that young

generally have a lower survival rate than adults and that the first-year band re-

covery rate for young is typically higher than for adults.
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 I! age x, measured In some convenient unit of time such as day, month, year

etc.

the number of I',0 surviving to age x. The usual convention of scaling
X

Z so that Z = 1000 or 1, although useful in standardizing the table, is
x

not recommended when samples are small as it can give a false impression

of the accuracy of the table. If scaling is used, the raw data should

also be quoted'

d = Z � Z , t' he number of deaths in the age-class Ix,x+1!. This no-
x x x+1

tation, which follows actuarial practice, differs from that commonly used

 iii!

in the construction of animal life tables. Usually, x denotes the class

Interval [x-1,x!, and Z is defined to be the number surviving at the

beginning of this interval, I.e., of age x-1. One reason for the popular�

ity of The latter notation is that in applying, or should I say misapply-

ing, life table methods to birdbanding experiments ft is convenient to

think of d as the number of banded birds recovered in their xth year of
x

I ife. Since both notations are used they can, In practice, be combined

by the simple expedient of labelling the age-intervals 0-1, 1-2, etc.--

instead of 0,1,2, etc. or 1,2,3, etc, In this case, the first entry in

If w is the last age in the table, then

 Z - Z ! +  Z � Z ! + ... i  Z � 0!
x x x+1 x+1 x+2 '' w

4 + d + ... + dx x+1 ' w '

and

e =,+ Z 1+Z +...+2!/Z
x x+1 x+2 w x

ihe d column refers to the number dying in the interval [0,1!, irres-
x

pective of whether we cal I it d0 or di, Personal ly, I feel it would be
best if the notation of  ii! was universally adopted.

 jv! q = d /Z , the observed mortality rate at age x.
x x x

 v! e, the observed mean expectation of I ife remaining for individuals of
x

age x.
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When the observed mortality rates q are fairly constant, we can combine the q
X x

in several ways to give a mean mortality rate. One possibility is

I
w-1

qave = w ~ qx
x=0

or the more popular estimate

w-1 w-1

p..i = x=0 x=0

w-1

 x+1! d + wd

x=0
x

ln both cases ihe last age class w is not included as d = l and q = 1.
w w w

Data for an age-specific table can be col lected in two ways: �! by re-

cording the ages at death of animals in the cohcrt, thus giving a d series, orX

�! by recording the number of animals still alive at various times, thus giving

an Z series, The age-specif ic method is most readily applied to laboratory pop-
x

ulations of relatively short-lived species such as voles  Leslie et al., 1955!,

or to zoo populations  Comfort, 1957!, though such tables are of limited value.

In the case of natural popu!ations, the initial cohort can be identified by tag-

ging, and either of the above methods for collecting the data "an be used. For

example, a cohort can be followed up using radio telemetry  Trent and Rongstad,

1974, cottontail rabbits; Brand et ai., 1975, snowshoe hares; and Mech, 1977,

voles!.

Unfortunately, the stochastic aspects of life tabies have been largely

ignored and variance estimates are seldom given. However, a stochastic theory is

available from Chiang �960a,b!.

~Theo r

Suppose that al I individuals of age x from the cohort have the same pro-

bability P  = 1-Q ! of surviving to age x+1. Then the joint distribut'lon of
X x

d0edle...ed IS
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 dQ I ~ '' ~ I 0 " QQ P Qi ' I' Q 1!  PQP1
Hd!

x=0
x

For x = 0, 1,...,w-l, the maximum likelihood estimate of Q is the unbiased esti-
x

mate

Q = d / d + ... + d ! = d /5
X x x w x x

which is q again, with variance estimate
X

 I � Q !Q
x

1+ � ��1 1

'L LQ Q ]
l

x

 cf., Seber, 19/3, 408-9!. We note that x could refer to the coded age so that

the above theory can be appl led to any group of L Individuals of the same age.

Also, the above theory applies to the situation where some members of the cohort

are still alive at the end of the experiment. In this case, w is the time taken

by the experiment so that there are l animals of age w alive at the end of the
w

experiment and d  = L ! Is the number dying after the experiment has finished
w - w

and not just the number dying in the interval fw,w+1!.

If Q is assumed to be constant, say Q = Q, then the I ikel lhood function

is proportional to

+L +...+$
1 2 ' w 0 w

p

and the maximum likelihood function of Q turns out to be q I with asymptotic
pool

variance estimate

3
w w-1

v[q ] = ! 'L  L - 2 !/pool 1 x 0 w 0 x

As q is biased, the less efficient but unbiased estimate q with unbiased
pool ave

variance estimate



w-1

v[q ! =    q - q ! /w w 1!2

x=O

may be preferred. Regression estimates are also avai lable and the reader is re-

ferred to Seber �973, 413! for detai ls.

It would appear that q is the same as Lack's estimate of mortal ity
poo I

rate commonly used in birdbanding. This is not the case as Lack's estimate

w w

q = ! d!!Lack x �xx=0

includes an extra d and L  = d ! in the numerator and denominator. I ack's
w w w

method makes the assumption that there are no animals left at the end of the ex-

Q <PQ! ...  P Q!  P Q! = p Q

which may be compared with �!. The similarity of q and q has caused
pool Lack

some confusion in the literature because several authors have used the life table

approach simply as a means of calculating Lack's estimate. I recommend that this

use of the life table be dropped.

An Interesting application of q I was given by Trent and Rongstad <1974!
pool

who worked with adults only  i.e., x is a coded age! and used " time unit of one

day; the experiment lasting n  =w! days. Assuming a constant daily survival rate

of S <= l-Q!, they used S = 1 - q <cf., their equation �! with y. = d.pool pool i i-1'
x. = 2I 1! as their estimate of S. As the d were usually 0 and occasionally 1,

I x
the dai ly morta I ity rate was small  q = 0.0037!, so that Zd was approximately

poo I X
distributed as Poisso~ with mean <1-Q!EL . Tables of the Poisson distribution

x
n

were used io obtain a confidence interval for S and S <the survival rate for n

days!.

WIth reference to lect'ure 5 there is one further birdbanding model which

merits special reference, because of its misuse rather than its usefulness and

its connection with life tables. this model assumes that  i! the survival and



release. A goodness of fit test for this model which, as might be expected, does

not depend on the choice of identif iability constraint, is given by Burnham and

Anderson �979!. They also give a contingency table statistic to test whether

the first year recovery rates are constant. If the unconditional likelihood is

used, then the maximum likelihood equations for $. and !  do not have explicit
J

solutions and must be solved iteratively. When 4 . = 4  all j !, the conditional
J

approach leads to a generalization of Waldane's method <Seber, 1973, 246!.

However, the above assumptions are demonstrably invalid for game bird

studies, e.g., mallard <Anderson, 1975; Burnham and Anderson, !979! and are

questionabie for non-game species. For instance, the band recovery rates of

nearly all waterfowl species vary significantly by both age and year  Anderson,

1975, 13!.

depends on

ai., 1975,

In addition to the problem of time-dependent survival, harvest rate

the hunting regulations which may change with time  e.g., Hopper et

63!, and the band reporting rate tends to fall off with time as hunters

lose Interest in the program <Henny and Burnham, 1976!. Not only are the basic

assumptions generally Invalid, but the estimators obtained from the above modei

are also very sensitive to departures from the assumptions.

As well as the maximum likelihood approaches, there is another time-hal-

lowed method of analyzing the above model calied the composite dynamic method

 Hickey, 1952; Geis and Taber, 1963; Geis et al., 1971; Geis, 1972 a,b!. This

method, which is frequently set out in the form of a life table with the band re-

coveries from each age group being treated like a d series <cf., Seber, 1973,
x

252!, makes the additional assumption  iii! that the experiment is continued for

a sufficient number of years after the last release so that all the banded birds

are dead by the end of The experiment. When p . = $ then Lack's method is usually
J

used for estimating $. However, assumption  i i i! is not very practical in The

band recovery rates are age-dependent only <that is, they are unaffected by year
to year changes in ihe hunting regulations, habitat, weather, etc.! and  ii! the

age-specific band recovery rate is a constant fraction  ! ! of the age-specific

mortality  cf., Anderson and Burnham, 1976, Appendix B!. Thus if  I.  equivalent
J

to P. above! is the probabi I ity that a bird aged j-1 survives for one year, then

X i-g,! is the probabi I ity that a band ls recovered from a bird in the age range
J

[j-l, j l. An ana lysis of this model, which requires one constraint on the P.'s
J

for the purposes of identif Iabi I ity, has been carried out by Seber �971! using a

conditional I ikel ihood approach, that is he considers the joint distribution of

the band recoveries conditional on the total numbers of bands recovered from each
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Let S = N 1/N  x = 1,2,...,w-i!, the actual proportion surviving from
x x+1 x

age x to age x+1  we use S to distinguish this proportion from the probabi I ity
X

P !. Suppose that in a random sample of n animals n are of age x  some of the
x x

n may be zero!. Then, by considering the joint distribution of the n given n,
x x

Chapman and Robson �960! obtained the maximum likelihood estimates

S = n /n  x = 01...w 1: n yh 0!
x x+1 x X

along with asymptotic variances and covariances. If we regard the  n ! series as
x

an  L ! series we see that 1 � S is just q once again. However, because of
X x X

sampling variation in the n , S is now biased and Chapman and Robson suggested
X X

the almost unbiased modification

S" = n +1/ n +1!
x x+1 x

trlbutfon; truncated at age w. The maxImum likelihood estimate of S is then the

solution of

X/n =- [S/�-Si] -  w+1! S  I-S !w+1 w+ I
�!

where

w

X = ! xn
x=0

This solution is cal led S in Seber �973, 421! and a table fs available for
seg

Wsolving �!: an asymptotic variance formula is also gIven there. When S = 0,

which is usually the case, the second term on the rIght-hand side of �! can be

These estimates will have the same asymptotic variances and covariances as the

S . In practice w will be unknown so that the data will be truncated as some
x

!frechosen age K K < w!, where K ls chosen so that  hopefully! n >0  x = 0,1,...,K!.

If S fs assumed to be constant  as S, say!, then the underlying distri-

bution for the age x of a randomly chosen anfmal is the truncated geometric dis-



neglected and the maximum likelihood estimate is now S = X/ n+X!  = 1-q!. In

this case the underlying model is the  non-truncated! geometric distribution and

S = X/ n+X-I!

is a minimum variance unbiased estimate for this model with

v[S] = S S-

a minimum variance unbiased estimate of the exact variance of S  Chapman and Rob-

son, 1960!.

Although the life table format ls a convenient method of summarizing time-

specific data, the use of life table methods in this context has led to a great

deal of confusion. This confusion is usually caused by practitioners being un-

certain as to whether a sample of ages is an � ! or a  d ! series  Seber, 1973,
x x

401-2!. Cleariy the  n } must be a sampie of the live population if we are to
x

treat the  n ! as an fZ ! series and obtain the correct estimates S and S".
x x x x

However, when S = S, several estimates of q  = 1-S! have been proposed. For

example, setting n = 2 we have the following contenders:
x x

w W

q = n/ n+X! = ! 2 / !  x+'l

x=0 x=0

w-1 w-1

x=0 x=0

w W

q =   d/�
x=0 x=0

w w

$ d / !  x+1!d
x=0 x=0

w

x=0
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q1 d0/7.

w

dr!
x=0

where w is now the maximum observed age in the sample. Here 1-q  = S! is the

maximum likelihood estimate of S, 1-q  =  n +...+n !! n +...+n !! is simplypool 1 ''' w 0 ''' w-1
Jackson's �939! survival estimate 1-q  =  n-n !/n! is an estimate due to Hein-

H 0

ke �913!, and q is a simple estimate of mor tal ity based on the f irst entry in

the d column. All four estimates are used and will all generally give reason-
x

able  and similar! answers as d " �-S!L . However, if the  n ! series is in-
x x x

correctly treated as a  d ! rather than an  L ! series, then using q and q is
x x

equivalent to using q and qH. also q will still provide a reasonable estimate
 being similar to using qH!. Thus ecologists can freely confuse l. and d and

x x
stili get a reasonable estimate of S.

Stage-Specific Survival Rates
As insects pass through various stages of development  egg, larval instar,

etc.! it would seem appropriate to estlmate survival rates for each stage. If a

cohort of eggs can be followed through the various stages then the stochastic

model of �! can be used to estimate the P , where P is now the probability that
x x

an insect entering stage number x survives to enter stage number x + 1. Examples

where cohort and related information is available are given by Beaver �966!,

Berryman �968! and McLaren and Pottinger �969!. However, in practice, informa-

tion about the stages is usually obtained by taking a sequence of samples from

the population and noting the proportions of insects In the different stages for

each sample. Unfortunately, such data is not easy to analyse as the time when an

insect enters the cycle of stages is random so that the insects get out of phase

and the various stages overlap. A number of attempts have been made to set up an

adequate model and obtain estimates of stage-specific survival, average duration

of each stage, numbers entering each stage and daily survival rates. Manly �974b!

compared five such methods due respectively to Richards and Waioff �954!, Rich-

ards et al. �960!  though see Manly, 1975, for a stochastic justification!,
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assume a constant daiiy survival rate throughout', and all the methods assume that

the durations of the stages are the same for all insects. Kiritani and Nakasuji's

 K-N! method requires the sampling to be carried out at equal intervals of time

until almost all the insects are dead, while Manly's method assumes a normal dis-

tributlon for entry times' Manly concluded thai the K-N method should be used for

estimating stage-specific survival provided the conditions about sampling are

satisfied. Otherwise, Manly's method should be used, particularly if it is de-

sired to estimate the actual number of insects entering each stage. In later pa-

pers Manly �976, 1977! extended the K-N method so that it could be used with

populations thaf have been sampled at irregular intervals of time, He also gave

procedures for estimating various other parameters in addition to age-specific

survival rates and demonstrated that Tukey's jackknife method for variance esti-

mation is reliable. Since Manly's extension seems to be the best of the above

methods, the basic equations are summarized as follows using Manly's �977! nota-

tton. For a given stage let:

M = number of insects that enter the stage,

a = duration of the stage  measured, say, in days and assumed to be

the same for all insects!,

daily survival rate  the probability of surviving for one day!,

probability density function for the distribution of time of en-

try to the stage  $ u! ~ f x! in Manly's noTation!,

-e
e

P u!

mean time of entry to the stage, and

v = variance of the time of entry to the stage.2

Now the expected number, N t! say, of the insects in this stage at time t will be

those individuals that entered In the time interval  t � a,t! and survived to

time t, that ls

t

N t! = M 4  u!e du

t-a

Dempster �961!, Kiritani and Nakasuj i �967!, and Manly �974c! under a variety

of conditions using simulation. All the methods require fairly strong assumptions

and are listed for comparison by Manly �974b!. For example, four of the methods
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We require the fol lowing expressions:

A = N i !dt M� - e !/e

-1 -ea -&a
6 + u � ae /� � e !B = � tN t!dt

1

A

and

C = � t N i !di � B
l 2 2

A

-2 2 2 -Ha/� -Oa
0 + a - a e /� - e

Suppose that the insects start

and that atl insects have left

and C are

n

A = y !  h. + h, !N t.!J 1 J J+1 j

n

B = 4 $  h. + h. 1 t.N t.!/A, and
!+1 J J

n

C = 4    h. + h. !t. [N t.!] /A � B
J J+1 J J

where h. = t. � t, . As we have f ive unknown parameters for each stage, namely
J J J

M, e, a, ! and a we cannot estimate these parameters by equating A, B, and C to

their estimates. However, by assuming 6 is constant for all stages, Manly shows

how the data from the different stages can be pooled to provide "moment-type"

estimates of all the parameters. Finally, there is the important problem of find-

populai.ion is sampled at times

N i ! at these times  N t ! = N

estimating the areas under the

to enter the stage being considered just after t

the stage by some time t . Suppose also that then'

tl,t ,...,t so that we have estimates N t,! of1' 2' ' n 1
 t ! = 0!. Then using the trapezoidal rule for

n
2

curves N t!, tN t! and t N t!, estimates of A, B,



ing estimates N t.! of N t !. If n t.! is the number
I i

at time t., and a proportion p. of the populations Is
I I

Usual ly p, is kept constant throughout the experiment
I

t ion of the population area  or popu'l ation volume, as

sampled from a given stage

sampled, then N t.!=n t.!/p..
I I

and is equal to the propor�

in the case of trees! sam-

pled.

Birlep 'a method. An alternative approach to stage-specific survival is

given by Birley �977! who uses the more realistic discrete version of �!  since

sampling is discrete!, namely

N = M   $ t - j!a.
j=0

where N i s t he expected number in a g i ven stage on day t, p  t � j ! i s the f rac-

tion of the population entering the stage on day t � j, and a . is the probability
J

of an insect in the stage surviving j days. Setting R = M and L. = Ma.  = s. in
0 j j j

Birley's notation!, we have for that stage a I ife table ser Ies  R.,!, where the

time unit is one day. I f $ u! can be estimated  for example, from emergence

traps, cage experiments, or from visible differences between old and new!, and

estimates N are avai lable at times t, t'hen the II,. can be estimated by minimiz-t i' J
ing

2$lN � $ y t � j!a,l
J=o

subject to 10 > Ri > ~ ~ ~ > R > 0. Basical ly this is a so-cal led constrained
multipie linear regression and can be solved using quadrat'ic programming. Al-

ternatively, the E. could be modelled in terms of a smooth function with fewer
j

parameters. For example, If the survival rate is constant, we can assume

Me " = MgJ , say.
J

One advantage of Sirley's model is that it can be modif ied to take care of catas-
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trophes, for example sudden changes fn survival due to the application of an in-

secticide. However, an objective method of determining a is not given, though a
general plot of II.. against i for a guessed a will give further fnformation about

I
a

Method of' Read and Ashfa>8. A very general method, showing considerable

potential, has been given by Read and Ashford �9681 and Ashford et a I. �970!,

The mafn advantage of thfs approach over the above method ls that it al lows for a

random stage length. If X. is the time that an individual is in stage I
I

 i = 1,2,...,k!, then X. = min YI,Z ! where Y. would be the time spent in stage iI 1' 1

if there were no mortal ity and Z would be the time an individual I ives in stage

i assuming no transition to stage I + 1. Let f, g,, h. and F., G,, H. be the
I I I I

respective density and distribution functions of X., Y., Z.. Then, assuming the
I I

independence of Y and Z, Pr [X > X] = Pr [Y. > x]Pr [Z. > x] or 1 � F.  x!i' i i I
[1 � G  x!] [1 - H  x!]. Thus differentiating we have

i 1

f, x! = g . x! [ 1 � H. x!] + h. x! [1 � G. x!]
J I I

Now if p  t! is the probability that an individual is alive in stage i at time t,

it follows that

t

 u. ! [1 � F.  t - u. !]du.
i-1 i-1 I I -1 i-1

p, t!

III.  u. !
f I 1 ui 1!k.  u, � u. 1!du. 1i-1 i-1 i i I � 1 i-1

where

k  u! = g  u![1 � H. u!]
i 1 I

where <. is the density function of the time of entry to stage i from stage i-1.
i-1

Also
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-6. z.

h, z,! = 6.e
I I I

�!

which I eads to

-8.u

k. u! = g, u!e
I I

They also consider model I ing g. by a one parameter Erlangian distribution, namely
I

a scaled Gamma distribution with 2 or 3 degrees of freedom and an unknown scale

factor, and then estimate al I the parameters using maximum I ikel ihood estimation.

Unfortunately, considerable computations are required and some of the equations

are not given, which will unfortunately preclude the use of, the method by some

ecofogists.

If the generation length is constant  = a ! rather than random, and
i

h. z. ! is given by �!, then
I

-6 x
I

e 0<x<a.
I

otherwise,

and

-6. t-u !
i i-1

du.p.  t!

the probabi I ity density function of the time spent in stage i given that ii enters

stage i + 1. Ashford et el. �970! assume that death is a Poisson process so that
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which is the same as The expression for N t!/M given by �!. Also 41 ui!
 u, + a.!.

i-1 i I

Other methods. One approach to the ~bove type of problem is to model the

population by a continuous time Markov chain with transition states corresponding

to the various stages and an absorbing state corresponding to death. Moon �9/6!

developed such a model for a mosquito population and obtained an expression for
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